Salk Institute for Biological Studies, La Jolla, CA 92037, USA.
Philos Trans R Soc Lond B Biol Sci. 2012 Sep 19;367(1602):2513-6. doi: 10.1098/rstb.2012.0013.
The advantageous chemical properties of the phosphate ester linkage were exploited early in evolution to generate the phosphate diester linkages that join neighbouring bases in RNA and DNA (Westheimer 1987 Science 235, 1173-1178). Following the fixation of the genetic code, another use for phosphate ester modification was found, namely reversible phosphorylation of the three hydroxyamino acids, serine, threonine and tyrosine, in proteins. During the course of evolution, phosphorylation emerged as one of the most prominent types of post-translational modification, because of its versatility and ready reversibility. Phosphoamino acids generated by protein phosphorylation act as new chemical entities that do not resemble any natural amino acid, and thereby provide a means of diversifying the chemical nature of protein surfaces. A protein-linked phosphate group can form hydrogen bonds or salt bridges either intra- or intermolecularly, creating stronger hydrogen bonds with arginine than either aspartate or glutamate. The unique size of the ionic shell and charge properties of covalently attached phosphate allow specific and inducible recognition of phosphoproteins by phosphospecific-binding domains in other proteins, thus promoting inducible protein-protein interaction. In this manner, phosphorylation serves as a switch that allows signal transduction networks to transmit signals in response to extracellular stimuli.
磷酸酯键的有利化学性质在进化早期就被利用,产生了连接 RNA 和 DNA 中相邻碱基的磷酸二酯键(Westheimer 1987 Science 235, 1173-1178)。在遗传密码固定之后,人们又发现了磷酸酯修饰的另一种用途,即蛋白质中三个羟基氨基酸丝氨酸、苏氨酸和酪氨酸的可逆磷酸化。在进化过程中,由于其多功能性和易于逆转,磷酸化成为最突出的翻译后修饰类型之一。由蛋白质磷酸化产生的磷酸氨基酸作为新的化学实体,与任何天然氨基酸都不相似,从而为蛋白质表面的化学性质多样化提供了一种手段。与天冬氨酸或谷氨酸相比,蛋白质连接的磷酸基团可以在分子内或分子间形成氢键或盐桥,从而与精氨酸形成更强的氢键。共价连接的磷酸基团的独特离子壳大小和电荷特性允许其他蛋白质中的磷酸特异性结合域特异性和诱导性识别磷酸蛋白,从而促进诱导性蛋白质-蛋白质相互作用。通过这种方式,磷酸化作为一种开关,允许信号转导网络响应细胞外刺激传递信号。