Suppr超能文献

磷酸化位点进化的机制。

A mechanism for the evolution of phosphorylation sites.

机构信息

Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA.

出版信息

Cell. 2011 Nov 11;147(4):934-46. doi: 10.1016/j.cell.2011.08.052.

Abstract

Protein phosphorylation provides a mechanism for the rapid, reversible control of protein function. Phosphorylation adds negative charge to amino acid side chains, and negatively charged amino acids (Asp/Glu) can sometimes mimic the phosphorylated state of a protein. Using a comparative genomics approach, we show that nature also employs this trick in reverse by evolving serine, threonine, and tyrosine phosphorylation sites from Asp/Glu residues. Structures of three proteins where phosphosites evolved from acidic residues (DNA topoisomerase II, enolase, and C-Raf) show that the relevant acidic residues are present in salt bridges with conserved basic residues, and that phosphorylation has the potential to conditionally restore the salt bridges. The evolution of phosphorylation sites from glutamate and aspartate provides a rationale for why phosphorylation sometimes activates proteins, and helps explain the origins of this important and complex process.

摘要

蛋白质磷酸化提供了一种快速、可逆的蛋白质功能调控机制。磷酸化会在氨基酸侧链上添加负电荷,而带负电荷的氨基酸(天冬氨酸/谷氨酸)有时可以模拟蛋白质的磷酸化状态。我们采用比较基因组学方法发现,自然界也通过将天冬氨酸/谷氨酸残基进化为丝氨酸、苏氨酸和酪氨酸磷酸化位点来反其道而行之。三个蛋白质结构(DNA 拓扑异构酶 II、烯醇化酶和 C-Raf)的研究表明,相关的酸性残基与保守的碱性残基形成盐桥,而磷酸化有可能使盐桥恢复到一种有条件的状态。从谷氨酸和天冬氨酸进化而来的磷酸化位点为为什么磷酸化有时会激活蛋白质提供了一个理由,并有助于解释这一重要而复杂的过程的起源。

相似文献

1
A mechanism for the evolution of phosphorylation sites.
Cell. 2011 Nov 11;147(4):934-46. doi: 10.1016/j.cell.2011.08.052.
2
Molecular evolution before the origin of species.
Prog Biophys Mol Biol. 2002 May-Jul;79(1-3):77-133. doi: 10.1016/s0079-6107(02)00012-3.
3
Evolution and phyletic distribution of two-component signal transduction systems.
Curr Opin Microbiol. 2010 Apr;13(2):219-25. doi: 10.1016/j.mib.2009.12.011. Epub 2010 Feb 3.
4
Loops and repeats in proteins as footprints of molecular evolution.
Biochemistry (Mosc). 2012 Dec;77(13):1487-99. doi: 10.1134/S000629791213007X.
5
Classification and Lineage Tracing of SH2 Domains Throughout Eukaryotes.
Methods Mol Biol. 2017;1555:59-75. doi: 10.1007/978-1-4939-6762-9_4.
6
Complex salt bridges in proteins: statistical analysis of structure and function.
J Mol Biol. 1995 Dec 8;254(4):761-70. doi: 10.1006/jmbi.1995.0653.
7
Evolution of protein phosphorylation for distinct functional modules in vertebrate genomes.
Mol Biol Evol. 2011 Mar;28(3):1131-40. doi: 10.1093/molbev/msq268. Epub 2010 Oct 18.
9
Influence of Glu/Arg, Asp/Arg, and Glu/Lys Salt Bridges on α-Helical Stability and Folding Kinetics.
Biophys J. 2016 Jun 7;110(11):2328-2341. doi: 10.1016/j.bpj.2016.04.015.
10
Evolution of protein phosphorylation across 18 fungal species.
Science. 2016 Oct 14;354(6309):229-232. doi: 10.1126/science.aaf2144.

引用本文的文献

3
A triple serine motif in the intracellular domain of SorCS2 impacts its cellular signaling.
iScience. 2025 May 19;28(6):112695. doi: 10.1016/j.isci.2025.112695. eCollection 2025 Jun 20.
4
Differential Role of Phosphorylation in Glucagon Family Receptor Signaling Revealed by Mass Spectrometry.
J Proteome Res. 2025 Jul 4;24(7):3367-3378. doi: 10.1021/acs.jproteome.5c00079. Epub 2025 Jun 12.
6
CDK5-triggered G6PD phosphorylation at threonine 91 facilitating redox homeostasis reveals a vulnerability in breast cancer.
Acta Pharm Sin B. 2025 Mar;15(3):1608-1625. doi: 10.1016/j.apsb.2024.12.019. Epub 2024 Dec 25.
8
Revisiting phosphoregulation of Cdc25C during M-phase induction.
iScience. 2024 Dec 15;28(1):111603. doi: 10.1016/j.isci.2024.111603. eCollection 2025 Jan 17.
9
Opposing roles of p38α-mediated phosphorylation and PRMT1-mediated arginine methylation in driving TDP-43 proteinopathy.
Cell Rep. 2025 Jan 28;44(1):115205. doi: 10.1016/j.celrep.2024.115205. Epub 2025 Jan 14.
10
Identification of Critical Phosphorylation Sites Enhancing Kinase Activity With a Bimodal Fusion Framework.
Mol Cell Proteomics. 2025 Jan;24(1):100889. doi: 10.1016/j.mcpro.2024.100889. Epub 2024 Nov 30.

本文引用的文献

1
Evolutionary patterns of phosphorylated serines.
Biol Direct. 2011 Feb 9;6:8. doi: 10.1186/1745-6150-6-8.
2
Extensive crosstalk between O-GlcNAcylation and phosphorylation regulates cytokinesis.
Sci Signal. 2010 Jan 12;3(104):ra2. doi: 10.1126/scisignal.2000526.
3
Mapping the tree of life: progress and prospects.
Microbiol Mol Biol Rev. 2009 Dec;73(4):565-76. doi: 10.1128/MMBR.00033-09.
4
Global analysis of Cdk1 substrate phosphorylation sites provides insights into evolution.
Science. 2009 Sep 25;325(5948):1682-6. doi: 10.1126/science.1172867.
5
A comparison of MSA tools.
Bioinformation. 2008 Jul 31;2(10):452-5. doi: 10.6026/97320630002452.
6
DNA topoisomerases: harnessing and constraining energy to govern chromosome topology.
Q Rev Biophys. 2008 Feb;41(1):41-101. doi: 10.1017/S003358350800468X.
7
Specificity in two-component signal transduction pathways.
Annu Rev Genet. 2007;41:121-45. doi: 10.1146/annurev.genet.41.042007.170548.
8
PI2PE: protein interface/interior prediction engine.
Nucleic Acids Res. 2007 Jul;35(Web Server issue):W357-62. doi: 10.1093/nar/gkm231. Epub 2007 May 25.
9
Dating divergences in the Fungal Tree of Life: review and new analyses.
Mycologia. 2006 Nov-Dec;98(6):838-49. doi: 10.3852/mycologia.98.6.838.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验