Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA.
Cell. 2011 Nov 11;147(4):934-46. doi: 10.1016/j.cell.2011.08.052.
Protein phosphorylation provides a mechanism for the rapid, reversible control of protein function. Phosphorylation adds negative charge to amino acid side chains, and negatively charged amino acids (Asp/Glu) can sometimes mimic the phosphorylated state of a protein. Using a comparative genomics approach, we show that nature also employs this trick in reverse by evolving serine, threonine, and tyrosine phosphorylation sites from Asp/Glu residues. Structures of three proteins where phosphosites evolved from acidic residues (DNA topoisomerase II, enolase, and C-Raf) show that the relevant acidic residues are present in salt bridges with conserved basic residues, and that phosphorylation has the potential to conditionally restore the salt bridges. The evolution of phosphorylation sites from glutamate and aspartate provides a rationale for why phosphorylation sometimes activates proteins, and helps explain the origins of this important and complex process.
蛋白质磷酸化提供了一种快速、可逆的蛋白质功能调控机制。磷酸化会在氨基酸侧链上添加负电荷,而带负电荷的氨基酸(天冬氨酸/谷氨酸)有时可以模拟蛋白质的磷酸化状态。我们采用比较基因组学方法发现,自然界也通过将天冬氨酸/谷氨酸残基进化为丝氨酸、苏氨酸和酪氨酸磷酸化位点来反其道而行之。三个蛋白质结构(DNA 拓扑异构酶 II、烯醇化酶和 C-Raf)的研究表明,相关的酸性残基与保守的碱性残基形成盐桥,而磷酸化有可能使盐桥恢复到一种有条件的状态。从谷氨酸和天冬氨酸进化而来的磷酸化位点为为什么磷酸化有时会激活蛋白质提供了一个理由,并有助于解释这一重要而复杂的过程的起源。