Suppr超能文献

产科患者意外困难气道:高保真模拟中形成性评估新算法的开发。

Unanticipated difficult airway in obstetric patients: development of a new algorithm for formative assessment in high-fidelity simulation.

机构信息

Department of Anesthesia and Pain Medicine, University of Toronto, Toronto, Ontario, Canada.

出版信息

Anesthesiology. 2012 Oct;117(4):883-97. doi: 10.1097/ALN.0b013e31826903bd.

Abstract

BACKGROUND

The objective of this study was to develop a consensus-based algorithm for the management of the unanticipated difficult airway in obstetrics, and to use this algorithm for the assessment of anesthesia residents' performance during high-fidelity simulation.

METHODS

An algorithm for unanticipated difficult airway in obstetrics, outlining the management of six generic clinical situations of "can and cannot ventilate" possibilities in three clinical contexts: elective cesarean section, emergency cesarean section for fetal distress, and emergency cesarean section for maternal distress, was used to create a critical skills checklist. The authors used four of these scenarios for high-fidelity simulation for residents. Their critical and crisis resource management skills were assessed independently by three raters using their checklist and the Ottawa Global rating scale.

RESULTS

Sixteen residents participated. The checklist scores ranged from 64-80% and improved from scenario 1 to 4. Overall Global rating scale scores were marginal and not significantly different between scenarios. The intraclass correlation coefficient of 0.69 (95% CI: 0.58, 0.78) represents a good interrater reliability for the checklist. Multiple critical errors were identified, the most common being not calling for help or a difficult airway cart.

CONCLUSIONS

Aside from identifying common critical errors, the authors noted that the residents' performance was poorest in two of our scenarios: "fetal distress and cannot intubate, cannot ventilate" and "maternal distress and cannot intubate, but can ventilate." More teaching emphasis may be warranted to avoid commonly identified critical errors and to improve overall management. Our study also suggests a potential for experiential learning with successive simulations.

摘要

背景

本研究旨在制定一种基于共识的产科意外困难气道管理算法,并使用该算法评估麻醉住院医师在高保真模拟中的表现。

方法

本研究使用一种产科意外困难气道算法,概述了在三种临床情况下,即择期剖宫产、胎儿窘迫紧急剖宫产和产妇窘迫紧急剖宫产中,对六种通用临床“可通气和不可通气”可能性情况的管理,以制定关键技能检查表。作者使用其中的四个场景对住院医师进行高保真模拟。他们的关键和危机资源管理技能由三位评估员使用他们的检查表和渥太华全球评分量表进行独立评估。

结果

16 名住院医师参与了研究。检查表的分数范围从 64-80%,从场景 1 到 4 逐渐提高。总体全球评分量表的分数处于边缘水平,且各场景之间没有显著差异。0.69(95%置信区间:0.58, 0.78)的组内相关系数表示检查表具有良好的组内一致性。确定了多个关键错误,最常见的错误是没有呼救或困难气道车。

结论

除了确定常见的关键错误外,作者还注意到住院医师在我们的两个场景中的表现最差:“胎儿窘迫且无法插管,无法通气”和“产妇窘迫且无法插管,但可通气”。可能需要更多的教学重点,以避免常见的关键错误并改善整体管理。我们的研究还表明,随着连续模拟的进行,可能会有经验学习的机会。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验