van Asselt E, van Raamsdonk W, de Graaf F, Smit-Onel M J, Diegenbach P C, Heuts B
Department of Experimental Zoology, University of Amsterdam, The Netherlands.
Brain Res. 1990 Oct 29;531(1-2):25-35. doi: 10.1016/0006-8993(90)90754-y.
Histochemical profiles were made of identified spinal motoneurons from normal adult zebrafish and from animals subjected to cordotomy or unilateral axotomy of the motor nerves. The lesions caused an increase of the myotomal area with oxidative muscle fibers. We studied the question: do changes in the myotomal muscle configuration concur with changes in the enzyme histochemical profiles of innervating motoneurons? Based on the location and size of cell somata, two categories of motoneurons are distinguished: large white (W) motoneurons that innervate the deep fast, glycolytic muscle fibers, and smaller red and intermediate (RI) motoneurons that innervate the superficial slow oxidative and intermediate muscle fibers. In normal animals, glucose-6-phosphate dehydrogenase activity is high in the large W motoneurons and relatively low in the small RI motoneurons. The reverse holds for succinate dehydrogenase activity is high in the large W motoneurons and relatively low in the small RI motoneurons. The reverse holds for succinate dehydrogenase activity. W and RI motoneurons show similar nicotinamide adenine dinucleotide diaphorase activity. Short- (2 weeks) and long- (8 weeks) term effects of lesions were studied. The results show that: (1) the 3 types of lesions lead to prolonged changes in the enzyme histochemical profiles of spinal motoneurons. The type of change depends on the type of lesion and on the type of motoneuron; (2) unilateral axotomy of the motor nerves affects the histochemical characteristics of spinal motoneurons and the myotomal muscle fiber type configuration on the ipsi- and contralateral side. The contralateral effects are conceived as adaptations to maintain a left-right symmetry in the motor output.
对正常成年斑马鱼以及接受脊髓切断术或运动神经单侧轴突切断术的动物中已确定的脊髓运动神经元进行了组织化学分析。这些损伤导致含氧化肌纤维的肌节区域增加。我们研究了以下问题:肌节肌肉结构的变化是否与支配运动神经元的酶组织化学特征的变化一致?根据细胞体的位置和大小,区分出两类运动神经元:支配深层快速糖酵解肌纤维的大型白色(W)运动神经元,以及支配浅层慢速氧化和中间肌纤维的较小的红色和中间(RI)运动神经元。在正常动物中,大W运动神经元中的葡萄糖-6-磷酸脱氢酶活性较高,而小RI运动神经元中的活性相对较低。琥珀酸脱氢酶活性则相反,大W运动神经元中的活性较低,小RI运动神经元中的活性相对较高。W和RI运动神经元显示出相似的烟酰胺腺嘌呤二核苷酸黄递酶活性。研究了损伤的短期(2周)和长期(8周)影响。结果表明:(1)三种类型的损伤导致脊髓运动神经元的酶组织化学特征发生长期变化。变化类型取决于损伤类型和运动神经元类型;(2)运动神经的单侧轴突切断术会影响脊髓运动神经元的组织化学特征以及同侧和对侧的肌节肌纤维类型结构。对侧效应被认为是为维持运动输出的左右对称性而产生的适应性变化。