Suppr超能文献

阿尔茨海默病的淀粉样蛋白假说在治疗上是否相关?

Is the amyloid hypothesis of Alzheimer's disease therapeutically relevant?

机构信息

Department of Pathology and Cell Biology, Columbia University Medical Center, 630 West 168th Street, PH15-124, New York, NY 10032, USA.

出版信息

Biochem J. 2012 Sep 1;446(2):165-77. doi: 10.1042/BJ20120653.

Abstract

The conventional view of AD (Alzheimer's disease) is that much of the pathology is driven by an increased load of β-amyloid in the brain of AD patients (the 'Amyloid Hypothesis'). Yet, many therapeutic strategies based on lowering β-amyloid have so far failed in clinical trials. This failure of β-amyloid-lowering agents has caused many to question the Amyloid Hypothesis itself. However, AD is likely to be a complex disease driven by multiple factors. In addition, it is increasingly clear that β-amyloid processing involves many enzymes and signalling pathways that play a role in a diverse array of cellular processes. Thus the clinical failure of β-amyloid-lowering agents does not mean that the hypothesis itself is incorrect; it may simply mean that manipulating β-amyloid directly is an unrealistic strategy for therapeutic intervention, given the complex role of β-amyloid in neuronal physiology. Another possible problem may be that toxic β-amyloid levels have already caused irreversible damage to downstream cellular pathways by the time dementia sets in. We argue in the present review that a more direct (and possibly simpler) approach to AD therapeutics is to rescue synaptic dysfunction directly, by focusing on the mechanisms by which elevated levels of β-amyloid disrupt synaptic physiology.

摘要

阿尔茨海默病(AD)的传统观点认为,AD 患者大脑中β-淀粉样蛋白(β-amyloid)负荷增加是导致大部分病理的原因(“淀粉样蛋白假说”)。然而,迄今为止,许多基于降低β-淀粉样蛋白的治疗策略在临床试验中都失败了。β-淀粉样蛋白降低剂的这种失败导致许多人对淀粉样蛋白假说本身提出质疑。然而,AD 很可能是一种由多种因素驱动的复杂疾病。此外,越来越明显的是,β-淀粉样蛋白的处理涉及许多酶和信号通路,这些酶和信号通路在多种细胞过程中发挥作用。因此,β-淀粉样蛋白降低剂的临床失败并不意味着该假说本身是不正确的;这可能仅仅意味着,鉴于β-淀粉样蛋白在神经元生理学中的复杂作用,直接操纵β-淀粉样蛋白直接进行治疗干预可能是不现实的策略。另一个可能的问题可能是,当痴呆症发作时,有毒的β-淀粉样蛋白水平已经对下游细胞途径造成了不可逆转的损害。我们在本文综述中认为,一种更直接(可能更简单)的 AD 治疗方法是通过关注升高的β-淀粉样蛋白破坏突触生理学的机制,直接挽救突触功能障碍。

相似文献

1
Is the amyloid hypothesis of Alzheimer's disease therapeutically relevant?
Biochem J. 2012 Sep 1;446(2):165-77. doi: 10.1042/BJ20120653.
2
Targeting histone-modifications in Alzheimer's disease. What is the evidence that this is a promising therapeutic avenue?
Neuropharmacology. 2014 May;80:95-102. doi: 10.1016/j.neuropharm.2014.01.038. Epub 2014 Jan 31.
3
Beyond amyloid: getting real about nonamyloid targets in Alzheimer's disease.
Alzheimers Dement. 2013 Jul;9(4):452-458.e1. doi: 10.1016/j.jalz.2013.01.017.
4
Amyloid-β Receptors: The Good, the Bad, and the Prion Protein.
J Biol Chem. 2016 Feb 12;291(7):3174-83. doi: 10.1074/jbc.R115.702704. Epub 2015 Dec 30.
5
Are N- and C-terminally truncated Aβ species key pathological triggers in Alzheimer's disease?
J Biol Chem. 2018 Oct 5;293(40):15419-15428. doi: 10.1074/jbc.R118.003999. Epub 2018 Aug 24.
6
Do anti-amyloid-β drugs affect neuropsychiatric status in Alzheimer's disease patients?
Ageing Res Rev. 2019 Nov;55:100948. doi: 10.1016/j.arr.2019.100948. Epub 2019 Aug 24.
7
Facilitation of brain mitochondrial activity by 5-aminolevulinic acid in a mouse model of Alzheimer's disease.
Nutr Neurosci. 2017 Nov;20(9):538-546. doi: 10.1080/1028415X.2016.1199114. Epub 2016 Jun 22.
8
Cognitive enhancement therapy for Alzheimer's disease. The way forward.
Drugs. 1997 May;53(5):752-68. doi: 10.2165/00003495-199753050-00003.
9
Mechanisms of beta-amyloid neurotoxicity: perspectives of pharmacotherapy.
Rev Neurosci. 2000;11(4):329-82. doi: 10.1515/revneuro.2000.11.4.329.

引用本文的文献

1
An insight into the concept of neuroinflammation and neurodegeneration in Alzheimer's disease: targeting molecular approach Nrf2, NF-κB, and CREB.
Inflammopharmacology. 2024 Oct;32(5):2943-2960. doi: 10.1007/s10787-024-01502-2. Epub 2024 Jun 29.
2
Alzheimer's disease and its treatment-yesterday, today, and tomorrow.
Front Pharmacol. 2024 May 24;15:1399121. doi: 10.3389/fphar.2024.1399121. eCollection 2024.
3
ZCCHC17 knockdown phenocopies Alzheimer's disease-related loss of synaptic proteins and hyperexcitability.
J Neuropathol Exp Neurol. 2024 Jun 20;83(7):626-635. doi: 10.1093/jnen/nlae033.
4
Anti-Amyloid Monoclonal Antibodies are Transformative Treatments that Redefine Alzheimer's Disease Therapeutics.
Drugs. 2023 May;83(7):569-576. doi: 10.1007/s40265-023-01858-9. Epub 2023 Apr 15.
5
ACU193: An Immunotherapeutic Poised to Test the Amyloid β Oligomer Hypothesis of Alzheimer's Disease.
Front Neurosci. 2022 Apr 26;16:848215. doi: 10.3389/fnins.2022.848215. eCollection 2022.
6
Drug repositioning: Progress and challenges in drug discovery for various diseases.
Eur J Med Chem. 2022 Apr 15;234:114239. doi: 10.1016/j.ejmech.2022.114239. Epub 2022 Feb 28.
9
Neuroprotective Effects of Quercetin in Alzheimer's Disease.
Biomolecules. 2019 Dec 30;10(1):59. doi: 10.3390/biom10010059.

本文引用的文献

1
Notch signaling and the generation of cell diversity in Drosophila neuroblast lineages.
Adv Exp Med Biol. 2012;727:47-60. doi: 10.1007/978-1-4614-0899-4_4.
2
An epigenetic blockade of cognitive functions in the neurodegenerating brain.
Nature. 2012 Feb 29;483(7388):222-6. doi: 10.1038/nature10849.
3
Solanezumab for the treatment of mild-to-moderate Alzheimer's disease.
Expert Rev Clin Immunol. 2012 Feb;8(2):135-49. doi: 10.1586/eci.11.93.
4
Hormetic effect of amyloid-β peptide in synaptic plasticity and memory.
Neurobiol Aging. 2012 Jul;33(7):1484.e15-24. doi: 10.1016/j.neurobiolaging.2011.12.020. Epub 2012 Jan 26.
5
Functions of Aβ, sAPPα and sAPPβ : similarities and differences.
J Neurochem. 2012 Jan;120 Suppl 1:99-108. doi: 10.1111/j.1471-4159.2011.07584.x. Epub 2011 Dec 7.
6
CREB and leukemogenesis.
Crit Rev Oncog. 2011;16(1-2):37-46. doi: 10.1615/critrevoncog.v16.i1-2.50.
7
Developing β-secretase inhibitors for treatment of Alzheimer's disease.
J Neurochem. 2012 Jan;120 Suppl 1(Suppl 1):71-83. doi: 10.1111/j.1471-4159.2011.07476.x. Epub 2011 Nov 28.
8
Twenty years of Alzheimer's disease-causing mutations.
J Neurochem. 2012 Jan;120 Suppl 1:3-8. doi: 10.1111/j.1471-4159.2011.07575.x. Epub 2011 Nov 28.
9
The physiology of the β-amyloid precursor protein intracellular domain AICD.
J Neurochem. 2012 Jan;120 Suppl 1:109-124. doi: 10.1111/j.1471-4159.2011.07475.x. Epub 2011 Nov 28.
10
Identification and biology of β-secretase.
J Neurochem. 2012 Jan;120 Suppl 1:55-61. doi: 10.1111/j.1471-4159.2011.07512.x. Epub 2011 Nov 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验