Department of Otolaryngology, Medical University of Innsbruck, 6020 Innsbruck, Anichstraße 35, Austria.
Nanomedicine (Lond). 2013 Feb;8(2):239-52. doi: 10.2217/nnm.12.91. Epub 2012 Aug 14.
Due to their biochemical versatility, nanoparticles (NPs) have become one of the most important future carriers for drugs and genes. NP-mediated delivery could enable an effective pharmacotherapy to the inner ear and combat hearing loss.
This study investigates the endocytic trafficking of silica NPs within HEI-OC1 cells, a cell line derived from the inner ear.
MATERIALS & METHODS: To investigate the interaction between 50-, 70- and 100-nm silica NPs and the cells, the authors employed a set of commonly available methods involving light and electron microscopy, and sample processing methods, which preserve the native cell shape and the fragile endocytic structures.
The authors observed that 50-nm NPs were the most efficiently internalized. They also identified macropinocytosis as the dominant mechanism of uptake, showed localization of NPs in the early endosome and observed that silica NPs were delayed during trafficking to the lysosomes, where these NPs stayed confined, showing no endosomal escape.
These silica NPs mostly rely on macropinocytosis for internalization. A successful use of silica NPs as vectors would involve smaller NPs and an endosomal escape strategy. Original submitted 21 December 2011; Revised submitted 23 May 2012; Published online 14 August 2012.
由于其生化多功能性,纳米粒子(NPs)已成为药物和基因的最重要的未来载体之一。NP 介导的递药可使内耳的药物治疗更有效,并对抗听力损失。
本研究旨在研究内耳膜迷路细胞(HEI-OC1 细胞)内二氧化硅 NPs 的内吞作用。
为了研究 50nm、70nm 和 100nm 二氧化硅 NPs 与细胞的相互作用,作者采用了一组常用的方法,包括光镜和电镜,以及可保持细胞原有形态和脆弱内吞结构的样品处理方法。
作者发现 50nm NPs 的内化效率最高。他们还确定了巨胞饮作用是主要的摄取机制,观察到 NPs 定位于早期内体,并发现二氧化硅 NPs 在向溶酶体运输过程中被延迟,这些 NPs 被局限在溶酶体中,没有发生内体逃逸。
这些二氧化硅 NPs 主要通过巨胞饮作用内化。成功地将二氧化硅 NPs 用作载体需要更小的 NPs 和内体逃逸策略。原始提交日期为 2011 年 12 月 21 日;修订后提交日期为 2012 年 5 月 23 日;在线发表日期为 2012 年 8 月 14 日。