Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, State Key Laboratory for Chemo/Biosensing and Chemometrics, Hunan University, People's Republic of China.
Nanoscale. 2012 Sep 21;4(18):5731-7. doi: 10.1039/c2nr31307c. Epub 2012 Aug 14.
In this report, we present a hybrid structure involving a small quantity of Co element uniformly deposited on porous SnO(2) spheres as stable and high capacity anode materials for lithium-ion batteries. Specifically, Co element deposited on SnO(2) nanomaterials exhibited an exceptional reversible capacity of 810 mA h g(-1) after 50 cycles which is higher than the pure SnO(2) electrode. Based on the experiments results, a possible mechanism for the change of this structure during lithium ion insertion/extraction was proposed. The minute quantity of Co element uniformly deposited on SnO(2) spherical structure could prevent Sn aggregation during charging-discharging, and high porosity of the spherical structure allowed the volume expansion during lithium ion alloying/dealloying. The SnO(2) deposited with small quantities of Co element as electrode facilitated improved performance of lithium ion batteries with higher energy densities.
在本报告中,我们提出了一种混合结构,其中包含少量均匀沉积在多孔 SnO(2) 球体上的 Co 元素,作为锂离子电池的稳定高容量阳极材料。具体来说,沉积在 SnO(2) 纳米材料上的 Co 元素在 50 次循环后表现出异常的可逆容量 810 mA h g(-1),高于纯 SnO(2)电极。根据实验结果,提出了这种结构在锂离子插入/抽出过程中变化的可能机制。少量均匀沉积在 SnO(2) 球形结构上的 Co 元素可以防止在充电-放电过程中 Sn 的聚集,而球形结构的高孔隙率允许在锂离子合金化/脱合金化过程中体积膨胀。将少量 Co 元素沉积在 SnO(2) 上作为电极,有利于提高具有更高能量密度的锂离子电池的性能。