Suppr超能文献

使用普通声级计指标进行爆炸噪声分类。

Blast noise classification with common sound level meter metrics.

机构信息

US Army Corps of Engineers, Engineer Research & Development Center, Champaign, Illinos 61820, USA.

出版信息

J Acoust Soc Am. 2012 Aug;132(2):822-31. doi: 10.1121/1.4730921.

Abstract

A common set of signal features measurable by a basic sound level meter are analyzed, and the quality of information carried in subsets of these features are examined for their ability to discriminate military blast and non-blast sounds. The analysis is based on over 120 000 human classified signals compiled from seven different datasets. The study implements linear and Gaussian radial basis function (RBF) support vector machines (SVM) to classify blast sounds. Using the orthogonal centroid dimension reduction technique, intuition is developed about the distribution of blast and non-blast feature vectors in high dimensional space. Recursive feature elimination (SVM-RFE) is then used to eliminate features containing redundant information and rank features according to their ability to separate blasts from non-blasts. Finally, the accuracy of the linear and RBF SVM classifiers is listed for each of the experiments in the dataset, and the weights are given for the linear SVM classifier.

摘要

分析了基本声级计可测量的一组常见信号特征,并研究了这些特征子集中信息的质量,以考察它们区分军事爆炸和非爆炸声音的能力。该分析基于从七个不同数据集汇总的超过 12 万个人工分类信号。本研究采用线性和高斯径向基函数 (RBF) 支持向量机 (SVM) 对爆炸声音进行分类。使用正交质心降维技术,可以了解爆炸和非爆炸特征向量在高维空间中的分布情况。然后,递归特征消除 (SVM-RFE) 用于消除包含冗余信息的特征,并根据其区分爆炸和非爆炸的能力对特征进行排序。最后,列出了数据集每个实验中线性和 RBF SVM 分类器的准确性,并给出了线性 SVM 分类器的权重。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验