Suppr超能文献

一种应用支持向量机进行城市声景评价的工具,用于开发声景分类模型。

A tool for urban soundscape evaluation applying Support Vector Machines for developing a soundscape classification model.

机构信息

ISVR, University of Southampton, Highfield Campus, SO17 1BJ Southampton, UK.

Department of Applied Physics, University of Granada, Avda. Fuentenueva s/n, 18071 Granada, Spain.

出版信息

Sci Total Environ. 2014 Jun 1;482-483:440-51. doi: 10.1016/j.scitotenv.2013.07.108. Epub 2013 Sep 2.

Abstract

To ensure appropriate soundscape management in urban environments, the urban-planning authorities need a range of tools that enable such a task to be performed. An essential step during the management of urban areas from a sound standpoint should be the evaluation of the soundscape in such an area. In this sense, it has been widely acknowledged that a subjective and acoustical categorization of a soundscape is the first step to evaluate it, providing a basis for designing or adapting it to match people's expectations as well. In this sense, this work proposes a model for automatic classification of urban soundscapes. This model is intended for the automatic classification of urban soundscapes based on underlying acoustical and perceptual criteria. Thus, this classification model is proposed to be used as a tool for a comprehensive urban soundscape evaluation. Because of the great complexity associated with the problem, two machine learning techniques, Support Vector Machines (SVM) and Support Vector Machines trained with Sequential Minimal Optimization (SMO), are implemented in developing model classification. The results indicate that the SMO model outperforms the SVM model in the specific task of soundscape classification. With the implementation of the SMO algorithm, the classification model achieves an outstanding performance (91.3% of instances correctly classified).

摘要

为了确保城市环境中的适当声景管理,城市规划当局需要一系列工具来完成这项任务。从声景角度管理城市地区的一个基本步骤应该是评估该地区的声景。在这种意义上,人们广泛认识到,对声景进行主观和声学分类是评估声景的第一步,为设计或调整声景以满足人们的期望提供了基础。在这种意义上,本工作提出了一种城市声景自动分类模型。该模型旨在根据潜在的声学和感知标准对城市声景进行自动分类。因此,该分类模型被提议用作全面城市声景评估的工具。由于与该问题相关的巨大复杂性,实现了两种机器学习技术,支持向量机 (SVM) 和使用序列最小优化 (SMO) 训练的 SVM,以开发模型分类。结果表明,在声景分类的特定任务中,SMO 模型优于 SVM 模型。通过实现 SMO 算法,分类模型实现了出色的性能(91.3%的实例正确分类)。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验