Suppr超能文献

在双极听觉神经元中,传入输入对树突模式的体内可逆调节。

In vivo reversible regulation of dendritic patterning by afferent input in bipolar auditory neurons.

机构信息

Virginia Merrill Bloedel Hearing Research Center, Department of Otolaryngology-Head and Neck Surgery, University of Washington School of Medicine, Seattle, Washington 98195, USA.

出版信息

J Neurosci. 2012 Aug 15;32(33):11495-504. doi: 10.1523/JNEUROSCI.1737-12.2012.

Abstract

Afferent input regulates neuronal dendritic patterning locally and globally through distinct mechanisms. To begin to understand these mechanisms, we differentially manipulate afferent input in vivo and assess effects on dendritic patterning of individual neurons in chicken nucleus laminaris (NL). Dendrites of NL neurons segregate into dorsal and ventral domains, receiving excitatory input from the ipsilateral and contralateral ears, respectively, via nucleus magnocellularis (NM). Blocking action potentials from one ear, by either cochlea removal or temporary treatment with tetrodotoxin (TTX), leads to rapid and significant retraction of affected NL dendrites (dorsal ipsilaterally and ventral contralaterally) within 8 h compared with the other dendrites of the same neurons. The degree of retraction is comparable with that induced by direct deafferentation resulting from transection of NM axons. Importantly, when inner ear activity is allowed to recover from TTX treatments, retracted NL dendrites regrow to their normal length within 48 h. The retraction and growth involve elimination of terminal branches and addition of new branches, respectively. Examination of changes in NL dendrites at 96 h after unilateral cochlea removal, a manipulation that induces cell loss in NM and persistent blockage of afferent excitatory action potentials, reveals a significant correlation between cell death in the ipsilateral NM and the degree of dendritic retraction in NL. These results demonstrate that presynaptic action potentials rapidly and reversibly regulate dendritic patterning of postsynaptic neurons in a compartment specific manner, whereas long-term dendritic maintenance may be regulated in a way that is correlated with the presence of silent presynaptic appositions.

摘要

传入输入通过不同的机制局部和全局地调节神经元树突模式。为了开始理解这些机制,我们在体内差异地操纵传入输入,并评估其对鸡核层(NL)中单个神经元树突模式的影响。NL 神经元的树突分为背侧和腹侧域,分别通过大细胞核(NM)接收来自同侧和对侧耳朵的兴奋性输入。通过耳蜗切除或用河豚毒素(TTX)进行临时处理阻断一只耳朵的动作电位,与同一神经元的其他树突相比,受影响的 NL 树突(同侧背侧和对侧腹侧)在 8 小时内迅速且显著回缩。回缩的程度与 NM 轴突横断导致的直接去传入引起的回缩相当。重要的是,当内耳活动从 TTX 处理中恢复时,回缩的 NL 树突在 48 小时内恢复到正常长度。回缩和生长分别涉及末端分支的消除和新分支的添加。在单侧耳蜗切除后 96 小时检查 NL 树突的变化,这种操作会导致 NM 中的细胞丢失和传入兴奋性动作电位的持续阻断,揭示了同侧 NM 中的细胞死亡与 NL 中树突回缩的程度之间存在显著相关性。这些结果表明,突触前动作电位以特定于隔室的方式快速且可逆地调节突触后神经元的树突模式,而长期树突维持可能以与沉默突触前毗邻相关的方式进行调节。

相似文献

1
In vivo reversible regulation of dendritic patterning by afferent input in bipolar auditory neurons.
J Neurosci. 2012 Aug 15;32(33):11495-504. doi: 10.1523/JNEUROSCI.1737-12.2012.
2
Rapid regulation of microtubule-associated protein 2 in dendrites of nucleus laminaris of the chick following deprivation of afferent activity.
Neuroscience. 2008 Jun 12;154(1):381-9. doi: 10.1016/j.neuroscience.2008.02.032. Epub 2008 Feb 29.
5
Relative input strength rapidly regulates dendritic structure of chick auditory brainstem neurons.
J Comp Neurol. 2011 Oct 1;519(14):2838-51. doi: 10.1002/cne.22656.
7
A circuit for coding interaural time differences in the chick brainstem.
J Neurosci. 1992 May;12(5):1698-708. doi: 10.1523/JNEUROSCI.12-05-01698.1992.

引用本文的文献

2
Mechanisms underlying auditory processing deficits in Fragile X syndrome.
FASEB J. 2020 Mar;34(3):3501-3518. doi: 10.1096/fj.201902435R. Epub 2020 Feb 10.
3
Postsynaptic FMRP Regulates Synaptogenesis in the Developing Cochlear Nucleus.
J Neurosci. 2018 Jul 18;38(29):6445-6460. doi: 10.1523/JNEUROSCI.0665-18.2018. Epub 2018 Jun 27.
5
Proteomic analyses of nucleus laminaris identified candidate targets of the fragile X mental retardation protein.
J Comp Neurol. 2017 Oct 15;525(15):3341-3359. doi: 10.1002/cne.24281. Epub 2017 Jul 24.
6
Distinct Neural Properties in the Low-Frequency Region of the Chicken Cochlear Nucleus Magnocellularis.
eNeuro. 2017 Apr 11;4(2). doi: 10.1523/ENEURO.0016-17.2017. eCollection 2017 Mar-Apr.
7
Illuminating the multifaceted roles of neurotransmission in shaping neuronal circuitry.
Neuron. 2014 Sep 17;83(6):1303-1318. doi: 10.1016/j.neuron.2014.08.029.
8
Resolution of interaural time differences in the avian sound localization circuit-a modeling study.
Front Comput Neurosci. 2014 Aug 26;8:99. doi: 10.3389/fncom.2014.00099. eCollection 2014.

本文引用的文献

1
Probing synaptic function in dendrites with calcium imaging.
Exp Neurol. 2013 Apr;242:27-32. doi: 10.1016/j.expneurol.2012.02.007. Epub 2012 Feb 21.
2
Synaptic plasticity in the medial superior olive of hearing, deaf, and cochlear-implanted cats.
J Comp Neurol. 2012 Jul 1;520(10):2202-17. doi: 10.1002/cne.23038.
3
Calcium/calmodulin-dependent protein kinase IV mediates distinct features of basal and activity-dependent dendrite complexity.
Neuroscience. 2011 Dec 29;199:548-62. doi: 10.1016/j.neuroscience.2011.09.048. Epub 2011 Oct 1.
4
Relative input strength rapidly regulates dendritic structure of chick auditory brainstem neurons.
J Comp Neurol. 2011 Oct 1;519(14):2838-51. doi: 10.1002/cne.22656.
5
Estimation of nuclear population from microtome sections.
Anat Rec. 1946 Feb;94:239-47. doi: 10.1002/ar.1090940210.
6
The single dendritic branch as a fundamental functional unit in the nervous system.
Curr Opin Neurobiol. 2010 Aug;20(4):494-502. doi: 10.1016/j.conb.2010.07.009. Epub 2010 Aug 25.
7
Peripheral auditory processing changes seasonally in Gambel's white-crowned sparrow.
J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2010 Aug;196(8):581-99. doi: 10.1007/s00359-010-0545-1. Epub 2010 Jun 20.
8
Twigs into branches: how a filopodium becomes a dendrite.
Curr Opin Neurobiol. 2010 Feb;20(1):86-91. doi: 10.1016/j.conb.2009.10.016. Epub 2009 Nov 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验