Department of Psychology, Vanderbilt University, Nashville, Tennessee 37240, USA.
J Neurophysiol. 2012 Nov;108(9):2534-44. doi: 10.1152/jn.00286.2012. Epub 2012 Aug 15.
Multisensory neurons in the superior colliculus (SC) have been shown to have large receptive fields that are heterogeneous in nature. These neurons have the capacity to integrate their different sensory inputs, a process that has been shown to depend on the physical characteristics of the stimuli that are combined (i.e., spatial and temporal relationship and relative effectiveness). Recent work has highlighted the interdependence of these factors in driving multisensory integration, adding a layer of complexity to our understanding of multisensory processes. In the present study our goal was to add to this understanding by characterizing how stimulus location impacts the temporal dynamics of multisensory responses in cat SC neurons. The results illustrate that locations within the spatial receptive fields (SRFs) of these neurons can be divided into those showing short-duration responses and long-duration response profiles. Most importantly, discharge duration appears to be a good determinant of multisensory integration, such that short-duration responses are typically associated with a high magnitude of multisensory integration (i.e., superadditive responses) while long-duration responses are typically associated with low integrative capacity. These results further reinforce the complexity of the integrative features of SC neurons and show that the large SRFs of these neurons are characterized by vastly differing temporal dynamics, dynamics that strongly shape the integrative capacity of these neurons.
上丘的多感觉神经元具有大的感受野,其性质是异质的。这些神经元有能力整合它们不同的感觉输入,这一过程已被证明取决于所组合的刺激的物理特征(即空间和时间关系以及相对有效性)。最近的工作强调了这些因素在驱动多感觉整合中的相互依赖性,为我们理解多感觉过程增加了一层复杂性。在本研究中,我们的目标是通过描述刺激位置如何影响猫上丘神经元多感觉反应的时间动态来增加对这一理解。结果表明,这些神经元的空间感受野(SRF)内的位置可以分为表现出短持续时间反应和长持续时间反应特征的位置。最重要的是,放电持续时间似乎是多感觉整合的一个很好的决定因素,即短持续时间反应通常与高幅度的多感觉整合(即超加法反应)相关,而长持续时间反应通常与低整合能力相关。这些结果进一步强调了上丘神经元整合特征的复杂性,并表明这些神经元的大 SRF 具有截然不同的时间动态,这些动态强烈影响这些神经元的整合能力。