Suppr超能文献

使用正交药理学遗传学实现无与伦比的神经活动控制。

Unparalleled control of neural activity using orthogonal pharmacogenetics.

机构信息

Miller Research Institute, Department of Bioengineering, and Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, California 94720, USA.

出版信息

ACS Chem Neurosci. 2012 Aug 15;3(8):619-29. doi: 10.1021/cn300053q. Epub 2012 Jun 1.

Abstract

Studying the functional architecture of the brain requires technologies to precisely measure and perturb the activity of specific neural cells and circuits in live animals. Substantial progress has been made in recent years to develop and apply such tools. In particular, technologies that provide precise control of activity in genetically defined populations of neurons have enabled the study of causal relationships between and among neural circuit elements and behavioral outputs. Here, we review an important subset of such technologies, in which neurons are genetically engineered to respond to specific chemical ligands that have no interfering pharmacological effect in the central nervous system. A rapidly expanding set of these "orthogonal pharmacogenetic" tools provides a unique combination of genetic specificity, functional diversity, spatiotemporal precision, and potential for multiplexing. We review the main classes of orthogonal pharmacogenetic technologies, including neuroreceptors to control neuronal excitability, systems to control gene transcription and translation, and general constructs to control protein-protein interactions, enzymatic function, and protein stability. We describe the key performance characteristics informing the use of these technologies in the brain, and potential directions for improvement and expansion of the orthogonal pharmacogenetics toolkit to enable more sophisticated systems neuroscience.

摘要

研究大脑的功能结构需要能够精确测量和干扰活体动物特定神经细胞和回路活动的技术。近年来,在开发和应用此类工具方面取得了重大进展。特别是,提供对遗传定义的神经元群体活动进行精确控制的技术,使我们能够研究神经回路元件与行为输出之间以及相互之间的因果关系。在这里,我们回顾了此类技术的一个重要子集,其中神经元经过基因工程改造,以响应特定的化学配体,而这些配体在中枢神经系统中没有干扰药理学效应。这些“正交药理学遗传学”工具的快速扩展集提供了遗传特异性、功能多样性、时空精度和复用潜力的独特组合。我们回顾了正交药理学遗传学技术的主要类别,包括控制神经元兴奋性的神经受体、控制基因转录和翻译的系统,以及控制蛋白质-蛋白质相互作用、酶功能和蛋白质稳定性的通用构建体。我们描述了影响这些技术在大脑中应用的关键性能特征,以及改进和扩展正交药理学遗传学工具包以实现更复杂的系统神经科学的潜在方向。

相似文献

1
Unparalleled control of neural activity using orthogonal pharmacogenetics.
ACS Chem Neurosci. 2012 Aug 15;3(8):619-29. doi: 10.1021/cn300053q. Epub 2012 Jun 1.
2
Optogenetics and pharmacogenetics: principles and applications.
Am J Physiol Regul Integr Comp Physiol. 2017 Dec 1;313(6):R633-R645. doi: 10.1152/ajpregu.00091.2017. Epub 2017 Aug 9.
3
Chemogenetic tools to interrogate brain functions.
Annu Rev Neurosci. 2014;37:387-407. doi: 10.1146/annurev-neuro-071013-014048. Epub 2014 Jun 16.
4
Rapidly inducible, genetically targeted inactivation of neural and synaptic activity in vivo.
Curr Opin Neurobiol. 2007 Oct;17(5):581-6. doi: 10.1016/j.conb.2007.10.002. Epub 2007 Nov 28.
5
Chemogenetics drives paradigm change in the investigation of behavioral circuits and neural mechanisms underlying drug action.
Behav Brain Res. 2021 May 21;406:113234. doi: 10.1016/j.bbr.2021.113234. Epub 2021 Mar 16.
6
A physiological perspective on the neuroscience of eating.
Physiol Behav. 2014 Sep;136:3-14. doi: 10.1016/j.physbeh.2014.03.022. Epub 2014 Apr 2.
7
Melding Synthetic Molecules and Genetically Encoded Proteins to Forge New Tools for Neuroscience.
Annu Rev Neurosci. 2022 Jul 8;45:131-150. doi: 10.1146/annurev-neuro-110520-030031. Epub 2022 Feb 28.
9
A technicolour approach to the connectome.
Nat Rev Neurosci. 2008 Jun;9(6):417-22. doi: 10.1038/nrn2391. Epub 2008 Apr 30.
10
Recent advances in optogenetics and pharmacogenetics.
Brain Res. 2013 May 20;1511:1-5. doi: 10.1016/j.brainres.2013.01.026. Epub 2013 Feb 17.

引用本文的文献

1
Advancements in the Quest to Map, Monitor, and Manipulate Neural Circuitry.
Front Neural Circuits. 2022 May 26;16:886302. doi: 10.3389/fncir.2022.886302. eCollection 2022.
2
State-of-the-art MEMS and microsystem tools for brain research.
Microsyst Nanoeng. 2017 Jan 2;3:16066. doi: 10.1038/micronano.2016.66. eCollection 2017.
3
Novel hybrid action of GABA mediates inhibitory feedback in the mammalian retina.
PLoS Biol. 2019 Apr 1;17(4):e3000200. doi: 10.1371/journal.pbio.3000200. eCollection 2019 Apr.
4
Principles of designing interpretable optogenetic behavior experiments.
Learn Mem. 2015 Mar 18;22(4):232-8. doi: 10.1101/lm.038026.114. Print 2015 Apr.
6
Dopamine: a parallel pathway for the modulation of spinal locomotor networks.
Front Neural Circuits. 2014 Jun 16;8:55. doi: 10.3389/fncir.2014.00055. eCollection 2014.
7
The problem with value.
Neurosci Biobehav Rev. 2014 Jun;43:259-68. doi: 10.1016/j.neubiorev.2014.03.027. Epub 2014 Apr 13.
9
Memory recall and modifications by activating neurons with elevated CREB.
Nat Neurosci. 2014 Jan;17(1):65-72. doi: 10.1038/nn.3592. Epub 2013 Nov 10.
10
Conduits of life's spark: a perspective on ion channel research since the birth of neuron.
Neuron. 2013 Oct 30;80(3):658-74. doi: 10.1016/j.neuron.2013.10.040.

本文引用的文献

1
Generation of a synthetic memory trace.
Science. 2012 Mar 23;335(6075):1513-6. doi: 10.1126/science.1214985.
3
Structure and dynamics of the M3 muscarinic acetylcholine receptor.
Nature. 2012 Feb 22;482(7386):552-6. doi: 10.1038/nature10867.
4
Synthetic RNA switches as a tool for temporal and spatial control over gene expression.
Curr Opin Biotechnol. 2012 Oct;23(5):679-88. doi: 10.1016/j.copbio.2012.01.005. Epub 2012 Feb 3.
5
Optogenetic tools for analyzing the neural circuits of behavior.
Trends Cogn Sci. 2011 Dec;15(12):592-600. doi: 10.1016/j.tics.2011.10.003. Epub 2011 Nov 4.
6
Chemical and genetic engineering of selective ion channel-ligand interactions.
Science. 2011 Sep 2;333(6047):1292-6. doi: 10.1126/science.1206606.
7
Impaired respiratory and body temperature control upon acute serotonergic neuron inhibition.
Science. 2011 Jul 29;333(6042):637-42. doi: 10.1126/science.1205295.
8
The development and application of optogenetics.
Annu Rev Neurosci. 2011;34:389-412. doi: 10.1146/annurev-neuro-061010-113817.
9
Pharmacogenetic modulation of orexin neurons alters sleep/wakefulness states in mice.
PLoS One. 2011;6(5):e20360. doi: 10.1371/journal.pone.0020360. Epub 2011 May 27.
10
Principles of activation and permeation in an anion-selective Cys-loop receptor.
Nature. 2011 Jun 2;474(7349):54-60. doi: 10.1038/nature10139. Epub 2011 May 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验