Miller Research Institute, Department of Bioengineering, and Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, California 94720, USA.
ACS Chem Neurosci. 2012 Aug 15;3(8):619-29. doi: 10.1021/cn300053q. Epub 2012 Jun 1.
Studying the functional architecture of the brain requires technologies to precisely measure and perturb the activity of specific neural cells and circuits in live animals. Substantial progress has been made in recent years to develop and apply such tools. In particular, technologies that provide precise control of activity in genetically defined populations of neurons have enabled the study of causal relationships between and among neural circuit elements and behavioral outputs. Here, we review an important subset of such technologies, in which neurons are genetically engineered to respond to specific chemical ligands that have no interfering pharmacological effect in the central nervous system. A rapidly expanding set of these "orthogonal pharmacogenetic" tools provides a unique combination of genetic specificity, functional diversity, spatiotemporal precision, and potential for multiplexing. We review the main classes of orthogonal pharmacogenetic technologies, including neuroreceptors to control neuronal excitability, systems to control gene transcription and translation, and general constructs to control protein-protein interactions, enzymatic function, and protein stability. We describe the key performance characteristics informing the use of these technologies in the brain, and potential directions for improvement and expansion of the orthogonal pharmacogenetics toolkit to enable more sophisticated systems neuroscience.
研究大脑的功能结构需要能够精确测量和干扰活体动物特定神经细胞和回路活动的技术。近年来,在开发和应用此类工具方面取得了重大进展。特别是,提供对遗传定义的神经元群体活动进行精确控制的技术,使我们能够研究神经回路元件与行为输出之间以及相互之间的因果关系。在这里,我们回顾了此类技术的一个重要子集,其中神经元经过基因工程改造,以响应特定的化学配体,而这些配体在中枢神经系统中没有干扰药理学效应。这些“正交药理学遗传学”工具的快速扩展集提供了遗传特异性、功能多样性、时空精度和复用潜力的独特组合。我们回顾了正交药理学遗传学技术的主要类别,包括控制神经元兴奋性的神经受体、控制基因转录和翻译的系统,以及控制蛋白质-蛋白质相互作用、酶功能和蛋白质稳定性的通用构建体。我们描述了影响这些技术在大脑中应用的关键性能特征,以及改进和扩展正交药理学遗传学工具包以实现更复杂的系统神经科学的潜在方向。