Department of Chemistry, The University of Alabama, Tuscaloosa, AL 35487, USA.
Biochemistry. 2012 Sep 11;51(36):7116-27. doi: 10.1021/bi300704c. Epub 2012 Aug 29.
Human ferrochelatase (EC 4.99.1.1) catalyzes the insertion ferrous iron into protoporphyrin IX as the last step in heme biosynthesis, an essential process to most organisms given the vast intracellular functions of heme. Even with multiple ferrochelatase structures available, the exact mechanism for iron insertion into porphyrin is still a matter for debate. It is clear, however, that conformational dynamics are important for porphyrin substrate binding, initial chelation of iron, insertion of iron into the macrocycle, and release of protoheme IX. In this work we characterize conformational and dynamic changes in ferrochelatase associated with porphyrin binding using the substrate mesoporphyrin (MPIX) and backbone amide hydrogen/deuterium exchange mass spectrometry (HDX-MS). In general, regions surrounding the active site become more ordered from direct or indirect interactions with the porphyrin. Our results indicate that the lower lip of the active site mouth is preorganized for efficient porphyrin binding, with little changes in backbone dynamics. The upper lip region has the most significant change in HDX behavior as it closes the active site. This movement excludes solvent from the porphyrin pocket, but leads to increased solvent access in other areas. A water lined path to the active site was observed, which may be the elusive iron channel with final insertion via the M76/R164/Y165 side of the porphyrin. These results provide a rigorous view of the ferrochelatase mechanism through the inclusion of dynamic information, reveal new structural areas for functional investigation, and offer new insight into a potential iron channel to the active site.
人类亚铁螯合酶(EC 4.99.1.1)催化亚铁离子插入原卟啉 IX 中,作为血红素生物合成的最后一步,这是大多数生物体必需的过程,因为血红素在细胞内具有广泛的功能。尽管有多种亚铁螯合酶结构可供使用,但铁插入卟啉的精确机制仍存在争议。然而,很明显,构象动力学对于卟啉底物结合、铁的初始螯合、铁插入大环和原血红素 IX 的释放都很重要。在这项工作中,我们使用底物mesoporphyrin(MPIX)和骨架酰胺氢/氘交换质谱(HDX-MS)来表征与卟啉结合相关的亚铁螯合酶的构象和动态变化。一般来说,与卟啉直接或间接相互作用的活性部位周围的区域变得更加有序。我们的结果表明,活性部位口的下唇预先组织好以进行有效的卟啉结合,骨架动力学变化很小。上唇区域的 HDX 行为变化最大,因为它关闭了活性部位。这种运动将溶剂排除在卟啉口袋之外,但导致其他区域的溶剂可及性增加。观察到一条通向活性部位的水线路径,这可能是最终通过卟啉的 M76/R164/Y165 侧插入的 elusive 铁通道。这些结果通过包含动态信息提供了对亚铁螯合酶机制的严格看法,揭示了新的功能研究结构区域,并为潜在的铁通道进入活性部位提供了新的见解。