Department of Chemistry, State University of New York at Buffalo, Buffalo, New York 14260-3000, United States.
Inorg Chem. 2012 Sep 3;51(17):9333-42. doi: 10.1021/ic301045v. Epub 2012 Aug 16.
The cesium polyhydrides (CsH(n), n > 1) are predicted to become stable, with respect to decomposition into CsH and H2, at pressures as low as 2 GPa. The CsH3 stoichiometry is found to have the lowest enthalpy of formation from CsH and H2 between 30 and 200 GPa. Evolutionary algorithms predict five distinct, mechanically stable, nearly isoenthalpic CsH3 phases consisting of H3(–) molecules and Cs+ atoms. The H3(–) sublattices in two of these adopt a hexagonal three-connected net; in the other three the net is twisted, like the silicon sublattice in the α-ThSi2 structure. The former emerge as being metallic below 100 GPa in our screened hybrid density functional theory calculations, whereas the latter remain insulating up to pressures greater than 250 GPa. The Cs+ cations in the most-stable I4(1)/amd CsH3 phase adopt the positions of the Cs atoms in Cs-IV, and the H3(–) molecules are found in the (interstitial) regions which display a maximum in the electron density.
多氢化铯(CsH(n),n > 1)预计在低至 2 GPa 的压力下就会稳定,不会分解为 CsH 和 H2。在 30 到 200 GPa 之间,CsH3 的化学计量比具有最低的形成焓。演化算法预测了五种独特的、力学稳定的、近乎等焓的 CsH3 相,由 H3(-)分子和 Cs+原子组成。其中两种相的 H3(-)子晶格采用六方三连接网络;在另外三种相中,网络扭曲,类似于 α-ThSi2 结构中的硅子晶格。在我们筛选的混合密度泛函理论计算中,前两种相在低于 100 GPa 的压力下表现为金属性,而后两种相在超过 250 GPa 的压力下仍保持绝缘性。在最稳定的 I4(1)/amd CsH3 相中,Cs+阳离子采用 Cs-IV 中 Cs 原子的位置,而 H3(-)分子存在于显示电子密度最大值的(间隙)区域中。