1] Materials Research Laboratory, University of California, Santa Barbara, California 93106-5050, USA and [2] Beijing Computational Science Research Center, Beijing 10084, China.
Nat Chem. 2013 Oct;5(10):846-52. doi: 10.1038/nchem.1754.
The periodicity of the elements and the non-reactivity of the inner-shell electrons are two related principles of chemistry, rooted in the atomic shell structure. Within compounds, Group I elements, for example, invariably assume the +1 oxidation state, and their chemical properties differ completely from those of the p-block elements. These general rules govern our understanding of chemical structures and reactions. Here, first-principles calculations show that, under pressure, caesium atoms can share their 5p electrons to become formally oxidized beyond the +1 state. In the presence of fluorine and under pressure, the formation of CsF(n) (n > 1) compounds containing neutral or ionic molecules is predicted. Their geometry and bonding resemble that of isoelectronic XeF(n) molecules, showing a caesium atom that behaves chemically like a p-block element under these conditions. The calculated stability of the CsF(n) compounds shows that the inner-shell electrons can become the main components of chemical bonds.
元素的周期性和内层电子的非反应性是化学的两个相关原则,其根源在于原子壳层结构。在化合物中,例如,第 I 族元素总是呈现+1 氧化态,其化学性质与 p 区元素完全不同。这些一般规则支配着我们对化学结构和反应的理解。在这里,第一性原理计算表明,在压力下,铯原子可以共享它们的 5p 电子,从而在+1 态以上被正式氧化。在氟的存在下和压力下,预测形成含有中性或离子分子的 CsF(n)(n > 1)化合物。它们的几何形状和键合类似于等电子 XeF(n)分子,表现出一种铯原子在这些条件下的化学行为类似于 p 区元素。所计算的 CsF(n)化合物的稳定性表明,内层电子可以成为化学键的主要组成部分。