Nano-Bio Spectroscopy Group and ETSF Scientific Development Centre, Departamento de Física de Materiales, UPV/EHU, Centro de Física de Materiales CSIC-UPV/EHU-MPC and DIPC, Av. Tolosa 72, E-20018 San Sebastián, Spain.
Phys Chem Chem Phys. 2012 Oct 5;14(37):12905-11. doi: 10.1039/c2cp41636k. Epub 2012 Aug 16.
Charge-transfer excitations highly depend on the electronic coupling between the donor and acceptor groups. Nitrophenolates are simple examples of charge-transfer systems where the degree of coupling differs between ortho, meta and para isomers. Here we report the absorption spectra of the isolated anions in vacuo to avoid the complications of solvent effects. Gas-phase action spectroscopy was done with two different setups, an electrostatic ion storage ring and an accelerator mass spectrometer. The results are interpreted on the basis of CC2 quantum chemical calculations. We identified absorption maxima at 393, 532, and 399 nm for the para, meta, and ortho isomer, respectively, with the charge-transfer transition into the lowest excited singlet state. In the meta isomer, this π-π* transition is strongly redshifted and its oscillator strength reduced, which is related to the pronounced charge-transfer character, as a consequence of the topology of the conjugated π-system. Each isomer's different charge distribution in the ground state leads to a very different solvent shift, which in acetonitrile is bathochromic for the para and ortho, but hypsochromic for the meta isomer.
电荷转移激发强烈依赖于给体和受体基团之间的电子耦合。硝基酚盐是电荷转移体系的简单例子,其中邻位、间位和对位异构体之间的耦合程度不同。在这里,我们报告了在真空中分离阴离子的吸收光谱,以避免溶剂效应的复杂性。气相作用光谱使用两种不同的装置进行,静电离子储存环和加速器质谱仪。结果是基于 CC2 量子化学计算进行解释的。我们确定了吸收最大值分别为 393nm、532nm 和 399nm,对应于对位、间位和邻位异构体,电荷转移跃迁到最低激发单线态。在间位异构体中,这个π-π*跃迁被强烈红移,其振子强度降低,这与共轭π体系的拓扑结构导致的明显电荷转移特性有关。每个异构体在基态的不同电荷分布导致非常不同的溶剂位移,在乙腈中,对位和邻位是增色的,而间位是减色的。