Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, OR 97331, USA.
Molecules. 2023 Jan 6;28(2):601. doi: 10.3390/molecules28020601.
Nitrophenols are a group of small organic molecules with significant environmental implications from the atmosphere to waterways. In this work, we investigate a series of nitrophenols and nitrophenolates, with the contrasting -, -, and -substituted nitro group to the phenolic hydroxy or phenolate oxygen site (2/3/4NP or NP), implementing a suite of steady-state and time-resolved spectroscopic techniques that include UV/Visible spectroscopy, femtosecond transient absorption (fs-TA) spectroscopy with probe-dependent and global analysis, and femtosecond stimulated Raman spectroscopy (FSRS), aided by quantum calculations. The excitation-dependent (400 and 267 nm) electronic dynamics in water and methanol, for six protonated or deprotonated nitrophenol molecules (three regioisomers in each set), enable a systematic investigation of the excited-state dynamics of these functional "nanomachines" that can undergo nitro-group twisting (as a rotor), excited-state intramolecular or intermolecular proton transfer (donor-acceptor, ESIPT, or ESPT), solvation, and cooling (chromophore) events on molecular timescales. In particular, the -substituted compound 3NP or 3NP exhibits the strongest charge-transfer character with FSRS signatures (e.g., C-N peak frequency), and thus, does not favor nitroaromatic twist in the excited state, while the -substituted compound 2NP can undergo ESIPT in water and likely generate nitrous acid (HONO) after 267 nm excitation. The delineated mechanistic insights into the nitro-substituent-location-, protonation-, solvent-, and excitation-wavelength-dependent effects on nitrophenols, in conjunction with the ultraviolet-light-induced degradation of 2NP in water, substantiates an appealing discovery loop to characterize and engineer functional molecules for environmental applications.
硝基酚是一组具有重要环境意义的小分子有机分子,从大气到水道都有涉及。在这项工作中,我们研究了一系列带有硝基酚和硝基酚盐的化合物,其中硝基取代了酚羟基或酚盐氧原子的位置(2/3/4NP 或 NP),采用了一系列稳态和时间分辨光谱技术,包括紫外/可见光谱、飞秒瞬态吸收(fs-TA)光谱(具有探针依赖性和全局分析)和飞秒受激拉曼光谱(FSRS),同时辅以量子计算。在水和甲醇中,对于六个质子化或去质子化的硝基酚分子(每组三个位置异构体),进行激发依赖性(400 和 267nm)电子动力学研究,系统地研究了这些功能“纳米机器”的激发态动力学,这些纳米机器可以经历硝基基团的扭转(作为转子)、激发态分子内或分子间质子转移(供体-受体、ESIPT 或 ESPT)、溶剂化和冷却(发色团)事件,这些事件发生在分子时间尺度上。特别是,-取代化合物 3NP 或 3NP 具有最强的电荷转移特征,具有 FSRS 特征(例如,C-N 峰频率),因此在激发态下不倾向于硝基芳烃扭转,而-取代化合物 2NP 可以在水中发生 ESIPT,并在 267nm 激发后可能生成亚硝酸(HONO)。硝基取代基位置、质子化、溶剂和激发波长对硝基酚的影响的机制见解,以及 2NP 在水中的紫外光诱导降解,为描述和设计用于环境应用的功能分子提供了一个有吸引力的发现循环。