Laboratoire de Céramique, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
IEEE Trans Ultrason Ferroelectr Freq Control. 2012 Aug;59(8):1624-31. doi: 10.1109/TUFFC.2012.2368.
Interdigitated electrode (IDE) systems with lead zirconate titanate (PZT) thin films play an increasingly important role for two reasons: first, such a configuration generates higher voltages than parallel plate capacitor-type electrode (PPE) structures, and second, the application of an electric field leads to a compressive stress component in addition to the overall stress state, unlike a PPE structure, which results in tensile stress component. Because ceramics tend to crack at relatively moderate tensile stresses, this means that IDEs have a lower risk of cracking than PPEs. For these reasons, IDE systems are ideal for energy harvesting of vibration energy, and for actuators. Systematic investigations of PZT films with IDE systems have not yet been undertaken. In this work, we present results on the evaluation of the in-plane piezoelectric coefficients with IDE systems. Additionally, we also propose a simple and measurable figure of merit (FOM) to analyze and evaluate the relevant piezoelectric parameter for harvesting efficiency without the need to fabricate the energy harvesting device. Idealized effective coefficients e(IDE) and h(IDE) are derived, showing its composite nature with about one-third contribution of the transverse effect, and about two-thirds contribution of the longitudinal effect in the case of a PZT film deposited on a (100)-oriented silicon wafer with the in-plane electric field along one of the <011> Si directions. Randomly oriented 1-μm-thick PZT 53/47 film deposited by a sol-gel technique, was evaluated and yielded an effective coefficient e(IDE) of 15 C·m(-2). Our FOM is the product between effective e and h coefficient representing twice the electrical energy density stored in the piezoelectric film per unit strain deformation (both for IDE and PPE systems). Assuming homogeneous fields between the fingers, and neglecting the contribution from below the electrode fingers, the FOM for IDE structures with larger electrode gap is derived to be twice as large as for PPE structures, for PZT-5H properties. The experiments yielded an FOM of the IDE structures of 1.25 × 10(10) J/m(3) and 14 mV/μ strain.
叉指电极 (IDE) 系统与锆钛酸铅 (PZT) 薄膜结合使用,原因有二:首先,这种结构产生的电压高于平行板电容器型电极 (PPE) 结构;其次,与 PPE 结构产生拉伸应力分量不同,施加电场会导致除整体应力状态之外还会产生压缩应力分量。由于陶瓷在相对适中的拉伸应力下容易出现裂纹,这意味着 IDE 比 PPE 出现裂纹的风险更低。基于这些原因,IDE 系统非常适合振动能的能量收集和致动器。对于具有 IDE 系统的 PZT 薄膜,尚未进行系统的研究。在这项工作中,我们介绍了使用 IDE 系统评估面内压电系数的结果。此外,我们还提出了一个简单且可测量的优值 (FOM),用于分析和评估与收集效率相关的压电参数,而无需制造能量收集器件。得出了理想化的有效系数 e(IDE) 和 h(IDE),表明其具有复合性质,在 PZT 薄膜沉积在 (100) 取向硅片上且面内电场沿<011>Si 方向之一的情况下,横向效应的贡献约为三分之一,纵向效应的贡献约为三分之二。通过溶胶-凝胶技术沉积的随机取向的 1μm 厚 PZT 53/47 薄膜进行了评估,得到有效系数 e(IDE)为 15 C·m(-2)。我们的 FOM 是有效 e 和 h 系数的乘积,表示单位应变变形下压电薄膜中存储的两倍电能密度(对于 IDE 和 PPE 系统均如此)。假设指之间的场是均匀的,并忽略电极指下方的贡献,推导出对于具有较大电极间隙的 IDE 结构,其 FOM 是对于 PZT-5H 性质的 PPE 结构的两倍。实验得到 IDE 结构的 FOM 为 1.25×10(10) J/m(3)和 14 mV/μ应变。