Suppr超能文献

肿瘤与免疫系统相互作用的两阶段癌症模型中的稳定周期振荡。

Stable periodic oscillations in a two-stage cancer model of tumor and immune system interactions.

机构信息

Department of Mathematics, Xidian University, Xi'an, Shaanxi, China.

出版信息

Math Biosci Eng. 2012 Apr;9(2):347-68. doi: 10.3934/mbe.2012.9.347.

Abstract

This paper presents qualitative and bifurcation analysis near the degenerate equilibrium in a two-stage cancer model of interactions between lymphocyte cells and solid tumor and contributes to a better understanding of the dynamics of tumor and immune system interactions. We first establish the existence of Hopf bifurcation in the 3-dimensional cancer model and rule out the occurrence of the degenerate Hopf bifurcation. Then a general Hopf bifurcation formula is applied to determine the stability of the limit cycle bifurcated from the interior equilibrium. Sufficient conditions on the existence of stable periodic oscillations of tumor levels are obtained for the two-stage cancer model. Numerical simulations are presented to illustrate the existence of stable periodic oscillations with reasonable parameters and demonstrate the phenomenon of long-term tumor relapse in the model.

摘要

本文对淋巴细胞细胞与实体瘤相互作用的两阶段癌症模型中的退化平衡点附近进行定性和分歧分析,有助于更好地理解肿瘤与免疫系统相互作用的动力学。我们首先在三维癌症模型中建立了 Hopf 分歧的存在性,并排除了退化 Hopf 分歧的发生。然后,应用一般的 Hopf 分歧公式来确定从内部平衡点分叉的极限环的稳定性。对于两阶段癌症模型,获得了肿瘤水平稳定周期振荡存在的充分条件。数值模拟结果说明了在合理参数下存在稳定的周期性振荡现象,并展示了模型中肿瘤长期复发的现象。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验