Suppr超能文献

人脂肪来源细胞可作为体外培养血管化骨移植物的单细胞来源。

Human adipose-derived cells can serve as a single-cell source for the in vitro cultivation of vascularized bone grafts.

作者信息

Correia Cristina, Grayson Warren, Eton Ryan, Gimble Jeffrey M, Sousa Rui A, Reis Rui L, Vunjak-Novakovic Gordana

机构信息

3Bs Research Group, Biomaterials, Biodegradables and Biomimetics, University of Minho, Guimarães, Portugal; ICVS/3Bs-PT Government Associate Laboratory, Braga/Guimarães, Portugal; Department of Biomedical Engineering, Columbia University, New York, USA.

出版信息

J Tissue Eng Regen Med. 2014 Aug;8(8):629-39. doi: 10.1002/term.1564. Epub 2012 Aug 17.

Abstract

Orthopaedic surgery often requires bone grafts to correct large defects resulting from congenital defects, surgery or trauma. Great improvements have been made in the tissue engineering of bone grafts. However, these grafts lack the vascularized component that is critical for their survival and function. From a clinical perspective, it would be ideal to engineer vascularized bone grafts starting from one single-cell harvest obtained from the patient. To this end, we explored the potential of human adipose-derived mesenchymal stem cells (hASCs) as a single-cell source for osteogenic and endothelial differentiation and the assembly of bone and vascular compartments within the same scaffold. hASCs were encapsulated in fibrin hydrogel as an angioinductive material for vascular formation, combined with a porous silk fibroin sponge to support osteogenesis, and subjected to sequential application of growth factors. Three strategies were evaluated by changing spatiotemporal cues: (a) induction of osteogenesis prior to vasculogenesis; (b) induction of vasculogenesis prior to osteogenesis; or (c) simultaneous induction of osteogenesis and vasculogenesis. By 5 weeks of culture, bone-like tissue development was evidenced by the deposition of bone matrix proteins, alkaline phosphatase activity and calcium deposition, along with the formation of vascular networks, evidenced by endothelial cell surface markers, such as CD31 and von Willebrand factor, and morphometric analysis. Most robust development of the two tissue compartments was achieved by sequential induction of osteogenesis followed by the induction of vasculogenesis. Taken together, the collected data strongly support the utility of hASCs as a single-cell source for the formation of vascularized bone tissue.

摘要

骨科手术常常需要骨移植来修复由先天性缺陷、手术或外伤导致的大面积骨缺损。骨移植的组织工程已经取得了巨大进展。然而,这些移植骨缺乏对其存活和功能至关重要的血管化成分。从临床角度来看,从患者获取的单个细胞起始构建血管化骨移植体将是理想的。为此,我们探索了人脂肪来源间充质干细胞(hASC)作为单一细胞来源用于成骨和内皮分化以及在同一支架内构建骨和血管成分的潜力。hASC被封装在作为血管生成诱导材料的纤维蛋白水凝胶中,与多孔丝素海绵结合以支持成骨,并接受生长因子的序贯应用。通过改变时空线索评估了三种策略:(a)血管生成之前诱导成骨;(b)成骨之前诱导血管生成;或(c)同时诱导成骨和血管生成。培养5周时,骨基质蛋白沉积、碱性磷酸酶活性和钙沉积证明了类骨组织的发育,同时内皮细胞表面标志物如CD31和血管性血友病因子以及形态计量分析证明了血管网络的形成。通过先序贯诱导成骨然后诱导血管生成实现了两个组织成分的最有力发育。综上所述,所收集的数据有力支持了hASC作为构建血管化骨组织的单一细胞来源的实用性。

相似文献

1
Human adipose-derived cells can serve as a single-cell source for the in vitro cultivation of vascularized bone grafts.
J Tissue Eng Regen Med. 2014 Aug;8(8):629-39. doi: 10.1002/term.1564. Epub 2012 Aug 17.
2
Development of silk-based scaffolds for tissue engineering of bone from human adipose-derived stem cells.
Acta Biomater. 2012 Jul;8(7):2483-92. doi: 10.1016/j.actbio.2012.03.019. Epub 2012 Mar 13.
3
Human amnion-derived mesenchymal stem cells promote osteogenic and angiogenic differentiation of human adipose-derived stem cells.
PLoS One. 2017 Oct 11;12(10):e0186253. doi: 10.1371/journal.pone.0186253. eCollection 2017.
6
Effect of nano-structured bioceramic surface on osteogenic differentiation of adipose derived stem cells.
Biomaterials. 2014 Oct;35(30):8514-27. doi: 10.1016/j.biomaterials.2014.06.028. Epub 2014 Jul 4.
7
Engineering human bone grafts with new macroporous calcium phosphate cement scaffolds.
J Tissue Eng Regen Med. 2018 Mar;12(3):715-726. doi: 10.1002/term.2491. Epub 2017 Sep 25.
9
Construction of vascularized tissue-engineered bone with a double-cell sheet complex.
Acta Biomater. 2018 Sep 1;77:212-227. doi: 10.1016/j.actbio.2018.07.024. Epub 2018 Jul 12.

引用本文的文献

1
Multimodular vascularized bone construct comprised of vasculogenic and osteogenic microtissues.
Biotechnol Bioeng. 2022 Nov;119(11):3284-3296. doi: 10.1002/bit.28201. Epub 2022 Aug 12.
2
Biofabrication of Prevascularised Hypertrophic Cartilage Microtissues for Bone Tissue Engineering.
Front Bioeng Biotechnol. 2021 Jun 7;9:661989. doi: 10.3389/fbioe.2021.661989. eCollection 2021.
3
Coculture of Endothelial and Stromal Cells to Promote Concurrent Osteogenesis and Vasculogenesis.
Tissue Eng Part A. 2021 Nov;27(21-22):1376-1386. doi: 10.1089/ten.TEA.2020.0330. Epub 2021 Mar 30.
5
Regeneration of rabbit calvarial defects using cells-implanted nano-hydroxyapatite coated silk scaffolds.
Biomater Res. 2015 Mar 21;19:7. doi: 10.1186/s40824-015-0027-1. eCollection 2015.
6
Skeletal Blood Flow in Bone Repair and Maintenance.
Bone Res. 2013 Dec 31;1(4):311-22. doi: 10.4248/BR201304002. eCollection 2013 Dec.
7
Stromal cells and stem cells in clinical bone regeneration.
Nat Rev Endocrinol. 2015 Mar;11(3):140-50. doi: 10.1038/nrendo.2014.234. Epub 2015 Jan 6.
8
Dual-phase osteogenic and vasculogenic engineered tissue for bone formation.
Tissue Eng Part A. 2015 Feb;21(3-4):530-40. doi: 10.1089/ten.TEA.2013.0740. Epub 2014 Oct 17.
9
Cell-based approaches to the engineering of vascularized bone tissue.
Cytotherapy. 2013 Nov;15(11):1309-22. doi: 10.1016/j.jcyt.2013.06.005. Epub 2013 Aug 31.
10
Obese-derived ASCs show impaired migration and angiogenesis properties.
Arch Physiol Biochem. 2013 Dec;119(5):195-201. doi: 10.3109/13813455.2013.784339. Epub 2013 May 14.

本文引用的文献

1
Development of silk-based scaffolds for tissue engineering of bone from human adipose-derived stem cells.
Acta Biomater. 2012 Jul;8(7):2483-92. doi: 10.1016/j.actbio.2012.03.019. Epub 2012 Mar 13.
2
In vitro model of vascularized bone: synergizing vascular development and osteogenesis.
PLoS One. 2011;6(12):e28352. doi: 10.1371/journal.pone.0028352. Epub 2011 Dec 2.
3
Biomaterials to prevascularize engineered tissues.
J Cardiovasc Transl Res. 2011 Oct;4(5):685-98. doi: 10.1007/s12265-011-9301-3. Epub 2011 Sep 3.
4
Comparative analysis of proteome and transcriptome variation in mouse.
PLoS Genet. 2011 Jun;7(6):e1001393. doi: 10.1371/journal.pgen.1001393. Epub 2011 Jun 9.
5
PDGF in bone formation and regeneration: new insights into a novel mechanism involving MSCs.
J Orthop Res. 2011 Dec;29(12):1795-803. doi: 10.1002/jor.21462. Epub 2011 May 25.
7
Optimizing the medium perfusion rate in bone tissue engineering bioreactors.
Biotechnol Bioeng. 2011 May;108(5):1159-70. doi: 10.1002/bit.23024. Epub 2010 Dec 22.
8
Nucleation and growth of mineralized bone matrix on silk-hydroxyapatite composite scaffolds.
Biomaterials. 2011 Apr;32(11):2812-20. doi: 10.1016/j.biomaterials.2010.12.058. Epub 2011 Jan 22.
10
Bone formation and neovascularization mediated by mesenchymal stem cells and endothelial cells in critical-sized calvarial defects.
Tissue Eng Part A. 2011 Feb;17(3-4):311-21. doi: 10.1089/ten.TEA.2010.0338. Epub 2010 Nov 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验