Suppr超能文献

超声激活微泡癌症治疗:神经酰胺产生导致体外辐射效应增强。

Ultrasound-activated microbubble cancer therapy: ceramide production leading to enhanced radiation effect in vitro.

机构信息

Radiation Oncology, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada.

出版信息

Technol Cancer Res Treat. 2013 Feb;12(1):53-60. doi: 10.7785/tcrt.2012.500253. Epub 2012 Aug 10.

Abstract

Blood vessels within tumours represent a key component for cancer cell survival. Disruption of these vessels can be achieved by inducing vascular endothelial-cell apoptosis. Moreover, endothelial cell apoptosis has been proven to be enhanced by ceramide-increasing drugs. Herein, we introduce a novel therapeutic approach which uses ultrasound-stimulated microbubbles used in combination with radiation to cause a rapid accumulation of ceramide in endothelial cells in-vitro. We also test this modality directly with other cell types as a general method of killing cancer cells. Human umbilical vein endothelial cells (HUVEC), acute myeloid leukemia cells (AML), murine fibrosarcoma cells (KHT-C), prostate cancer cells (PC3), breast cancer cells (MDA-MB-231) and astrocytes were used to evaluate this mechanism of inducing cell death. Survival was measured by clonogenic assays, and ceramide content was detected using immunohistochemistry. Exposure of cell types to ultrasound-stimulated bubbles alone resulted in increases in ceramide for all cell types and survivals of 12 ± 2%, 65 ± 5%, 83 ± 2%, 58 ± 4%, 58 ± 3%, 18 ± 7% for HUVEC, AML, PC3, MDA, KHT-C and astrocyte cells, respectively. Results from selected cell types involving radiation treatments indicated additive treatment enhancements and increases in intracellular ceramide content one hour after exposure to ultrasound-activated microbubbles and radiation. Endothelial cell survival decreased from 8 ± 1% after 2 Gy of radiation treatment alone and from 12 ± 2% after ultrasound and microbubbles alone, to 1 ± 1% with combined treatment. In Asmase +/+ astrocytes, survival decreased from 56 ± 2% after 2 Gy radiation alone and from 17 ± 7% after ultrasound and microbubbles alone, to 5 ± 2% when combined. Using ASMase deficient astrocytes (Asmase -/- ) and Sphingosine-1-phosphate (S1P), we also demonstrate that ultrasound-activated microbubbles stimulate ASMase activity and ceramide production. These findings suggest that ultrasound-stimulated microbubbles could be used as a new biomechanical method to enhance the effects of radiation.

摘要

肿瘤内的血管是癌细胞存活的关键组成部分。通过诱导血管内皮细胞凋亡可以破坏这些血管。此外,已经证明神经酰胺增加药物可以增强内皮细胞凋亡。在此,我们介绍了一种新的治疗方法,该方法使用超声刺激微泡与辐射结合,在体外使内皮细胞中神经酰胺快速积累。我们还直接使用其他细胞类型作为杀死癌细胞的一般方法来测试这种模式。人脐静脉内皮细胞(HUVEC)、急性髓性白血病细胞(AML)、鼠纤维肉瘤细胞(KHT-C)、前列腺癌细胞(PC3)、乳腺癌细胞(MDA-MB-231)和星形胶质细胞用于评估这种诱导细胞死亡的机制。通过集落形成测定法测量存活率,并用免疫组织化学法检测神经酰胺含量。单独暴露于超声刺激的微泡会导致所有细胞类型的神经酰胺增加,HUVEC、AML、PC3、MDA、KHT-C 和星形胶质细胞的存活率分别为 12 ± 2%、65 ± 5%、83 ± 2%、58 ± 4%、58 ± 3%、18 ± 7%。涉及辐射处理的选定细胞类型的结果表明,在暴露于超声激活的微泡和辐射后一小时,联合治疗增强了治疗效果并增加了细胞内神经酰胺含量。单独进行 2 Gy 辐射处理后,内皮细胞存活率从 8 ± 1%下降至 12 ± 2%,单独进行超声和微泡处理后,存活率从 12 ± 2%下降至 1 ± 1%,联合处理后存活率进一步下降至 1 ± 1%。在 Asmase +/+ 星形胶质细胞中,单独进行 2 Gy 辐射处理后存活率从 56 ± 2%下降至 17 ± 7%,单独进行超声和微泡处理后存活率从 17 ± 7%下降至 5 ± 2%,联合处理后存活率进一步下降至 5 ± 2%。使用 ASMase 缺陷型星形胶质细胞(Asmase -/-)和鞘氨醇-1-磷酸(S1P),我们还证明超声激活的微泡可刺激 ASMase 活性和神经酰胺的产生。这些发现表明,超声刺激的微泡可作为一种新的生物力学方法来增强辐射的效果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cca0/4527482/04998bc9b252/10.7785_tcrt.2012.500253-fig1.jpg

相似文献

1
Ultrasound-activated microbubble cancer therapy: ceramide production leading to enhanced radiation effect in vitro.
Technol Cancer Res Treat. 2013 Feb;12(1):53-60. doi: 10.7785/tcrt.2012.500253. Epub 2012 Aug 10.
2
Role of Acid Sphingomyelinase and Ceramide in Mechano-Acoustic Enhancement of Tumor Radiation Responses.
J Natl Cancer Inst. 2018 Sep 1;110(9):1009-1018. doi: 10.1093/jnci/djy011.
4
Microbubble-based enhancement of radiation effect: Role of cell membrane ceramide metabolism.
PLoS One. 2017 Jul 26;12(7):e0181951. doi: 10.1371/journal.pone.0181951. eCollection 2017.
5
Biomechanical effects of microbubbles: from radiosensitization to cell death.
Future Oncol. 2015;11(7):1093-108. doi: 10.2217/fon.15.19.
6
Ultrasound-stimulated microbubbles enhancement of fractionated radiation for tumor treatment.
BMC Cancer. 2023 Jul 24;23(1):693. doi: 10.1186/s12885-023-10981-5.
8
Focused Ultrasound Stimulation of Microbubbles in Combination With Radiotherapy for Acute Damage of Breast Cancer Xenograft Model.
Technol Cancer Res Treat. 2022 Jan-Dec;21:15330338221132925. doi: 10.1177/15330338221132925.
9
Effects of biophysical parameters in enhancing radiation responses of prostate tumors with ultrasound-stimulated microbubbles.
Ultrasound Med Biol. 2013 Aug;39(8):1376-87. doi: 10.1016/j.ultrasmedbio.2013.01.012. Epub 2013 Apr 30.
10
Ultrasound-stimulated microbubble enhancement of radiation treatments: endothelial cell function and mechanism.
Oncoscience. 2015 Dec 15;2(12):944-57. doi: 10.18632/oncoscience.277. eCollection 2015.

引用本文的文献

1
Ultrasound-Based Radiation Enhancement: Concepts, Mechanisms and Therapeutic Applications.
Technol Cancer Res Treat. 2024 Jan-Dec;23:15330338241298864. doi: 10.1177/15330338241298864.
2
Overview of Therapeutic Ultrasound Applications and Safety Considerations: 2024 Update.
J Ultrasound Med. 2025 Mar;44(3):381-433. doi: 10.1002/jum.16611. Epub 2024 Nov 11.
3
Ultrasound-stimulated Microbubbles for Treatment of Pancreatic Cancer Cells with Radiation and Nanoparticles: Study.
J Med Phys. 2024 Jul-Sep;49(3):326-334. doi: 10.4103/jmp.jmp_30_24. Epub 2024 Sep 21.
5
Progression in low-intensity ultrasound-induced tumor radiosensitization.
Cancer Med. 2024 Jul;13(13):e7332. doi: 10.1002/cam4.7332.
6
Radiation combined with ultrasound and microbubbles: A potential novel strategy for cancer treatment.
Z Med Phys. 2023 Aug;33(3):407-426. doi: 10.1016/j.zemedi.2023.04.007. Epub 2023 Aug 14.
7
Theranostics in the vasculature: bioeffects of ultrasound and microbubbles to induce vascular shutdown.
Theranostics. 2023 Jul 14;13(12):4079-4101. doi: 10.7150/thno.70372. eCollection 2023.
8
Solid tumor treatment via augmentation of bioactive C6 ceramide levels with thermally ablative focused ultrasound.
Drug Deliv Transl Res. 2023 Dec;13(12):3145-3153. doi: 10.1007/s13346-023-01377-w. Epub 2023 Jun 19.
9
Radioenhancement with the Combination of Docetaxel and Ultrasound Microbubbles: In Vivo Prostate Cancer.
Pharmaceutics. 2023 May 11;15(5):1468. doi: 10.3390/pharmaceutics15051468.

本文引用的文献

1
Tumor radiation response enhancement by acoustical stimulation of the vasculature.
Proc Natl Acad Sci U S A. 2012 Jul 24;109(30):E2033-41. doi: 10.1073/pnas.1200053109. Epub 2012 Jul 9.
2
Ceramide in stress response.
Adv Exp Med Biol. 2010;688:86-108. doi: 10.1007/978-1-4419-6741-1_6.
3
An in vitro study of a phase-shift nanoemulsion: a potential nucleation agent for bubble-enhanced HIFU tumor ablation.
Ultrasound Med Biol. 2010 Nov;36(11):1856-66. doi: 10.1016/j.ultrasmedbio.2010.07.001.
4
A study of bubble activity generated in ex vivo tissue by high intensity focused ultrasound.
Ultrasound Med Biol. 2010 Aug;36(8):1327-44. doi: 10.1016/j.ultrasmedbio.2010.05.011.
5
6
Engaging the vascular component of the tumor response.
Cancer Cell. 2005 Aug;8(2):89-91. doi: 10.1016/j.ccr.2005.07.014.
8
Ceramide synthesis and metabolism as a target for cancer therapy.
Cancer Lett. 2004 Apr 8;206(2):169-80. doi: 10.1016/j.canlet.2003.08.034.
10
Radiation and ceramide-induced apoptosis.
Oncogene. 2003 Sep 1;22(37):5897-906. doi: 10.1038/sj.onc.1206702.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验