Suppr超能文献

PDZ 依赖性囊性纤维化跨膜传导调节因子(CFTR)大分子信号复合物的体外分析

In vitro analysis of PDZ-dependent CFTR macromolecular signaling complexes.

作者信息

Wu Yanning, Wang Shuo, Li Chunying

机构信息

Department of Biochemistry & Molecular Biology, Wayne State University School of Medicine, USA.

出版信息

J Vis Exp. 2012 Aug 13(66):4091. doi: 10.3791/4091.

Abstract

Cystic fibrosis transmembrane conductance regulator (CFTR), a chloride channel located primarily at the apical membranes of epithelial cells, plays a crucial role in transepithelial fluid homeostasis(1-3). CFTR has been implicated in two major diseases: cystic fibrosis (CF)(4) and secretory diarrhea(5). In CF, the synthesis or functional activity of the CFTR Cl- channel is reduced. This disorder affects approximately 1 in 2,500 Caucasians in the United States(6). Excessive CFTR activity has also been implicated in cases of toxin-induced secretory diarrhea (e.g., by cholera toxin and heat stable E. coli enterotoxin) that stimulates cAMP or cGMP production in the gut(7). Accumulating evidence suggest the existence of physical and functional interactions between CFTR and a growing number of other proteins, including transporters, ion channels, receptors, kinases, phosphatases, signaling molecules, and cytoskeletal elements, and these interactions between CFTR and its binding proteins have been shown to be critically involved in regulating CFTR-mediated transepithelial ion transport in vitro and also in vivo(8-19). In this protocol, we focus only on the methods that aid in the study of the interactions between CFTR carboxyl terminal tail, which possesses a protein-binding motif [referred to as PSD95/Dlg1/ZO-1 (PDZ) motif], and a group of scaffold proteins, which contain a specific binding module referred to as PDZ domains. So far, several different PDZ scaffold proteins have been reported to bind to the carboxyl terminal tail of CFTR with various affinities, such as NHERF1, NHERF2, PDZK1, PDZK2, CAL (CFTR-associated ligand), Shank2, and GRASP(20-27). The PDZ motif within CFTR that is recognized by PDZ scaffold proteins is the last four amino acids at the C terminus (i.e., 1477-DTRL-1480 in human CFTR)(20). Interestingly, CFTR can bind more than one PDZ domain of both NHERFs and PDZK1, albeit with varying affinities(22). This multivalency with respect to CFTR binding has been shown to be of functional significance, suggesting that PDZ scaffold proteins may facilitate formation of CFTR macromolecular signaling complexes for specific/selective and efficient signaling in cells(16-18). Multiple biochemical assays have been developed to study CFTR-involving protein interactions, such as co-immunoprecipitation, pull-down assay, pair-wise binding assay, colorimetric pair-wise binding assay, and macromolecular complex assembly assay(16-19,28,29). Here we focus on the detailed procedures of assembling a PDZ motif-dependent CFTR-containing macromolecular complex in vitro, which is used extensively by our laboratory to study protein-protein or domain-domain interactions involving CFTR(16-19,28,29).

摘要

囊性纤维化跨膜传导调节因子(CFTR)是一种主要位于上皮细胞顶端膜的氯离子通道,在跨上皮液体稳态中起关键作用(1 - 3)。CFTR与两种主要疾病有关:囊性纤维化(CF)(4)和分泌性腹泻(5)。在CF中,CFTR氯离子通道的合成或功能活性降低。这种疾病在美国每2500名白种人中约有1人受影响(6)。CFTR活性过高也与毒素诱导的分泌性腹泻病例有关(例如,由霍乱毒素和热稳定大肠杆菌肠毒素引起),这些毒素会刺激肠道中cAMP或cGMP的产生(7)。越来越多的证据表明CFTR与越来越多的其他蛋白质之间存在物理和功能相互作用,这些蛋白质包括转运体、离子通道、受体、激酶、磷酸酶信号分子和细胞骨架成分,并且CFTR与其结合蛋白之间的这些相互作用已被证明在体外和体内对调节CFTR介导的跨上皮离子转运至关重要(8 - 19)。在本方案中,我们仅关注有助于研究CFTR羧基末端尾巴(其具有蛋白质结合基序,称为PSD95/Dlg1/ZO - 1(PDZ)基序)与一组支架蛋白(其包含称为PDZ结构域的特定结合模块)之间相互作用的方法。到目前为止,已经报道了几种不同的PDZ支架蛋白以不同亲和力与CFTR的羧基末端尾巴结合,例如NHERF1、NHERF2、PDZK1、PDZK2、CAL(CFTR相关配体)、Shank2和GRASP(20 - 27)。被PDZ支架蛋白识别的CFTR内的PDZ基序是C末端的最后四个氨基酸(即人CFTR中的1477 - DTRL - 1480)(20)。有趣的是,CFTR可以与NHERFs和PDZK1的多个PDZ结构域结合,尽管亲和力不同(22)。已证明这种关于CFTR结合的多价性具有功能意义,这表明PDZ支架蛋白可能促进CFTR大分子信号复合物的形成,以便在细胞中进行特定/选择性和高效的信号传导(16 - 18)。已经开发了多种生化测定方法来研究涉及CFTR的蛋白质相互作用,例如免疫共沉淀、下拉测定、成对结合测定、比色成对结合测定和大分子复合物组装测定(16 - 19,28,29)。在这里,我们重点介绍在体外组装依赖于PDZ基序的含CFTR大分子复合物的详细程序,我们实验室广泛使用该程序来研究涉及CFTR的蛋白质 - 蛋白质或结构域 - 结构域相互作用(16 - 19,28,29)。

相似文献

1
In vitro analysis of PDZ-dependent CFTR macromolecular signaling complexes.
J Vis Exp. 2012 Aug 13(66):4091. doi: 10.3791/4091.
2
The relative binding affinities of PDZ partners for CFTR: a biochemical basis for efficient endocytic recycling.
Biochemistry. 2008 Sep 23;47(38):10084-98. doi: 10.1021/bi8003928. Epub 2008 Aug 29.
3
Structural insights into PDZ-mediated interaction of NHERF2 and LPA(2), a cellular event implicated in CFTR channel regulation.
Biochem Biophys Res Commun. 2014 Mar 28;446(1):399-403. doi: 10.1016/j.bbrc.2014.02.128. Epub 2014 Mar 12.
4
Macromolecular complexes of cystic fibrosis transmembrane conductance regulator and its interacting partners.
Pharmacol Ther. 2005 Nov;108(2):208-23. doi: 10.1016/j.pharmthera.2005.04.004. Epub 2005 Jun 2.
5
CFTR chloride channel in the apical compartments: spatiotemporal coupling to its interacting partners.
Integr Biol (Camb). 2010 Apr;2(4):161-77. doi: 10.1039/b924455g. Epub 2010 Mar 5.
6
CFTR-NHERF2-LPA₂ Complex in the Airway and Gut Epithelia.
Int J Mol Sci. 2017 Sep 4;18(9):1896. doi: 10.3390/ijms18091896.
7
A sequence upstream of canonical PDZ-binding motif within CFTR COOH-terminus enhances NHERF1 interaction.
Am J Physiol Lung Cell Mol Physiol. 2016 Dec 1;311(6):L1170-L1182. doi: 10.1152/ajplung.00363.2016. Epub 2016 Oct 28.
8
Regulation of cystic fibrosis transmembrane conductance regulator single-channel gating by bivalent PDZ-domain-mediated interaction.
Proc Natl Acad Sci U S A. 2001 Jan 30;98(3):1300-5. doi: 10.1073/pnas.98.3.1300. Epub 2001 Jan 23.
9
A PDZ-interacting domain in CFTR is an apical membrane polarization signal.
J Clin Invest. 1999 Nov;104(10):1353-61. doi: 10.1172/JCI7453.
10
Analysis of CFTR interactome in the macromolecular complexes.
Methods Mol Biol. 2011;741:255-70. doi: 10.1007/978-1-61779-117-8_17.

引用本文的文献

本文引用的文献

1
A chemokine receptor CXCR2 macromolecular complex regulates neutrophil functions in inflammatory diseases.
J Biol Chem. 2012 Feb 17;287(8):5744-55. doi: 10.1074/jbc.M111.315762. Epub 2011 Dec 27.
2
Rescue of ΔF508-CFTR trafficking via a GRASP-dependent unconventional secretion pathway.
Cell. 2011 Sep 2;146(5):746-60. doi: 10.1016/j.cell.2011.07.021.
3
Analysis of CFTR interactome in the macromolecular complexes.
Methods Mol Biol. 2011;741:255-70. doi: 10.1007/978-1-61779-117-8_17.
4
CFTR chloride channel in the apical compartments: spatiotemporal coupling to its interacting partners.
Integr Biol (Camb). 2010 Apr;2(4):161-77. doi: 10.1039/b924455g. Epub 2010 Mar 5.
5
Tobacco carcinogen NNK transporter MRP2 regulates CFTR function in lung epithelia: implications for lung cancer.
Cancer Lett. 2010 Jun 28;292(2):246-53. doi: 10.1016/j.canlet.2009.12.009. Epub 2010 Jan 20.
6
7
Dynamic regulation of cystic fibrosis transmembrane conductance regulator by competitive interactions of molecular adaptors.
J Biol Chem. 2007 Apr 6;282(14):10414-22. doi: 10.1074/jbc.M610857200. Epub 2007 Jan 23.
9
Molecular assembly of cystic fibrosis transmembrane conductance regulator in plasma membrane.
J Biol Chem. 2004 Jun 4;279(23):24673-84. doi: 10.1074/jbc.M400688200. Epub 2004 Apr 1.
10
A macromolecular complex of beta 2 adrenergic receptor, CFTR, and ezrin/radixin/moesin-binding phosphoprotein 50 is regulated by PKA.
Proc Natl Acad Sci U S A. 2003 Jan 7;100(1):342-6. doi: 10.1073/pnas.0135434100. Epub 2002 Dec 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验