Institute of Molecular Biology and Department of Chemistry, University of Oregon, Eugene, OR 97403-1229, USA.
Proc Natl Acad Sci U S A. 2012 Sep 4;109(36):14428-33. doi: 10.1073/pnas.1212929109. Epub 2012 Aug 20.
We previously used changes in the near-UV circular dichroism and fluorescence spectra of DNA base analogue probes placed site specifically to show that the first three base pairs at the fork junction in model replication fork constructs are significantly opened by "breathing" fluctuations under physiological conditions. Here, we use these probes to provide mechanistic snapshots of the initial interactions of the DNA fork with a tight-binding replication helicase in solution. The primosome helicase of bacteriophage T4 was assembled from six (gp41) helicase subunits, one (gp61) primase subunit, and nonhydrolyzable GTPγS. When bound to a DNA replication fork construct this complex advances one base pair into the duplex portion of the fork and forms a stably bound helicase "initiation complex." Replacement of GTPγS with GTP permits the completion of the helicase-driven unwinding process. Our spectroscopic probes show that the primosome in this stable helicase initiation complex binds the DNA of the fork primarily via backbone contacts and holds the first complementary base pair of the fork in an open conformation, whereas the second, third, and fourth base pairs of the duplex show essentially the breathing behavior that previously characterized the first three base pairs of the free fork. These spectral changes, together with dynamic fluorescence quenching results, are consistent with a primosome-binding model in which the lagging DNA strand passes through the central hole of the hexagonal helicase, the leading strand binds to the "outside" surfaces of subunits of the helicase hexamer, and the single primase subunit interacts with both strands.
我们先前使用近紫外圆二色性和荧光光谱的变化来特异性地放置 DNA 碱基类似物探针,以显示在生理条件下,模型复制叉结构中叉结处的前三个碱基对通过“呼吸”波动显著打开。在这里,我们使用这些探针提供 DNA 叉与紧密结合的复制解旋酶在溶液中的初始相互作用的机制快照。T4 噬菌体的原核酶由六个(gp41)解旋酶亚基、一个(gp61)引发酶亚基和不可水解的 GTPγS 组装而成。当与 DNA 复制叉结构结合时,该复合物将一个碱基对推进到叉的双链部分,并形成稳定结合的解旋酶“起始复合物”。用 GTP 取代 GTPγS 允许解旋酶驱动的解旋过程完成。我们的光谱探针表明,在这个稳定的解旋酶起始复合物中,原核酶主要通过骨架接触结合叉的 DNA,并使叉的第一个互补碱基对处于开放构象,而双链的第二个、第三个和第四个碱基对显示出与先前表征自由叉的前三个碱基对相同的呼吸行为。这些光谱变化与动态荧光猝灭结果一致,表明原核酶结合模型中,滞后 DNA 链穿过解旋酶六聚体的中心孔,前导链结合到解旋酶六聚体的“外部”表面,而单个引发酶亚基与两条链相互作用。