Suppr超能文献

位置特异性 DNA 碱基对的呼吸波动参与调节解旋酶进入复制叉的运动。

Breathing fluctuations in position-specific DNA base pairs are involved in regulating helicase movement into the replication fork.

机构信息

Institute of Molecular Biology and Department of Chemistry, University of Oregon, Eugene, OR 97403-1229, USA.

出版信息

Proc Natl Acad Sci U S A. 2012 Sep 4;109(36):14428-33. doi: 10.1073/pnas.1212929109. Epub 2012 Aug 20.

Abstract

We previously used changes in the near-UV circular dichroism and fluorescence spectra of DNA base analogue probes placed site specifically to show that the first three base pairs at the fork junction in model replication fork constructs are significantly opened by "breathing" fluctuations under physiological conditions. Here, we use these probes to provide mechanistic snapshots of the initial interactions of the DNA fork with a tight-binding replication helicase in solution. The primosome helicase of bacteriophage T4 was assembled from six (gp41) helicase subunits, one (gp61) primase subunit, and nonhydrolyzable GTPγS. When bound to a DNA replication fork construct this complex advances one base pair into the duplex portion of the fork and forms a stably bound helicase "initiation complex." Replacement of GTPγS with GTP permits the completion of the helicase-driven unwinding process. Our spectroscopic probes show that the primosome in this stable helicase initiation complex binds the DNA of the fork primarily via backbone contacts and holds the first complementary base pair of the fork in an open conformation, whereas the second, third, and fourth base pairs of the duplex show essentially the breathing behavior that previously characterized the first three base pairs of the free fork. These spectral changes, together with dynamic fluorescence quenching results, are consistent with a primosome-binding model in which the lagging DNA strand passes through the central hole of the hexagonal helicase, the leading strand binds to the "outside" surfaces of subunits of the helicase hexamer, and the single primase subunit interacts with both strands.

摘要

我们先前使用近紫外圆二色性和荧光光谱的变化来特异性地放置 DNA 碱基类似物探针,以显示在生理条件下,模型复制叉结构中叉结处的前三个碱基对通过“呼吸”波动显著打开。在这里,我们使用这些探针提供 DNA 叉与紧密结合的复制解旋酶在溶液中的初始相互作用的机制快照。T4 噬菌体的原核酶由六个(gp41)解旋酶亚基、一个(gp61)引发酶亚基和不可水解的 GTPγS 组装而成。当与 DNA 复制叉结构结合时,该复合物将一个碱基对推进到叉的双链部分,并形成稳定结合的解旋酶“起始复合物”。用 GTP 取代 GTPγS 允许解旋酶驱动的解旋过程完成。我们的光谱探针表明,在这个稳定的解旋酶起始复合物中,原核酶主要通过骨架接触结合叉的 DNA,并使叉的第一个互补碱基对处于开放构象,而双链的第二个、第三个和第四个碱基对显示出与先前表征自由叉的前三个碱基对相同的呼吸行为。这些光谱变化与动态荧光猝灭结果一致,表明原核酶结合模型中,滞后 DNA 链穿过解旋酶六聚体的中心孔,前导链结合到解旋酶六聚体的“外部”表面,而单个引发酶亚基与两条链相互作用。

相似文献

引用本文的文献

6
Asymmetric base-pair opening drives helicase unwinding dynamics.非对称碱基对打开驱动解旋酶的解旋动力学。
Proc Natl Acad Sci U S A. 2019 Nov 5;116(45):22471-22477. doi: 10.1073/pnas.1901086116. Epub 2019 Oct 18.

本文引用的文献

3
Mechanisms of a ring shaped helicase.环形解旋酶的作用机制。
Nucleic Acids Res. 2006;34(15):4216-24. doi: 10.1093/nar/gkl508. Epub 2006 Aug 25.
8
Mechanisms of helicase-catalyzed DNA unwinding.解旋酶催化DNA解旋的机制。
Annu Rev Biochem. 1996;65:169-214. doi: 10.1146/annurev.bi.65.070196.001125.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验