ACS Nano. 2018 Dec 26;12(12):11963-11974. doi: 10.1021/acsnano.8b03679. Epub 2018 Nov 20.
Optical traps enable the nanoscale manipulation of individual biomolecules while measuring molecular forces and lengths. This ability relies on the sensitive detection of optically trapped particles, typically accomplished using laser-based interferometric methods. Recently, image-based particle tracking techniques have garnered increased interest as a potential alternative to laser-based detection; however, successful integration of image-based methods into optical trapping instruments for biophysical applications and force measurements has remained elusive. Here, we develop a camera-based detection platform that enables accurate and precise measurements of biological forces and interactions in a dual optical trap. In demonstration, we stretch and unzip DNA molecules while measuring the relative distances of trapped particles from their trapping centers with sub-nanometer accuracy and precision. We then use the DNA unzipping technique to localize bound proteins with sub-base-pair precision, revealing how thermal DNA "breathing" fluctuations allow an unzipping fork to detect and respond to the presence of a protein bound downstream. This work advances the capabilities of image tracking in optical traps, providing a state-of-the-art detection method that is accessible, highly flexible, and broadly compatible with diverse experimental substrates and other nanometric techniques.
光学陷阱能够在测量分子力和长度的同时,对单个生物分子进行纳米级操作。这种能力依赖于对被光学陷阱捕获的粒子的灵敏检测,通常使用基于激光的干涉测量方法来实现。最近,基于图像的粒子跟踪技术作为激光检测的潜在替代方法引起了越来越多的关注;然而,成功地将基于图像的方法集成到用于生物物理应用和力测量的光学陷阱仪器中仍然难以实现。在这里,我们开发了一种基于相机的检测平台,能够在双光阱中准确、精确地测量生物力和相互作用。在演示中,我们拉伸和解拉链 DNA 分子,同时以亚纳米的精度和精度测量捕获粒子与其捕获中心的相对距离。然后,我们使用 DNA 解拉链技术以亚碱基对的精度定位结合的蛋白质,揭示了热 DNA“呼吸”波动如何允许解拉链叉检测并响应下游结合的蛋白质的存在。这项工作推进了光学陷阱中图像跟踪的能力,提供了一种先进的检测方法,具有易用性、高度灵活性,并且与各种实验基底和其他纳米级技术广泛兼容。