Suppr超能文献

心肌肌节中基于肌联蛋白的张力:分子起源和生理适应。

Titin-based tension in the cardiac sarcomere: molecular origin and physiological adaptations.

机构信息

Department of Physics, University of Arizona, Tucson, AZ 85724, USA.

出版信息

Prog Biophys Mol Biol. 2012 Oct-Nov;110(2-3):204-17. doi: 10.1016/j.pbiomolbio.2012.08.003. Epub 2012 Aug 11.

Abstract

The passive stiffness of cardiac muscle plays a critical role in ventricular filling during diastole and is determined by the extracellular matrix and the sarcomeric protein titin. Titin spans from the Z-disk to the M-band of the sarcomere and also contains a large extensible region that acts as a molecular spring and develops passive force during sarcomere stretch. This extensible segment is titin's I-band region, and its force-generating mechanical properties determine titin-based passive tension. The properties of titin's I-band region can be modulated by isoform splicing and post-translational modification and are intimately linked to diastolic function. This review discusses the physical origin of titin-based passive tension, the mechanisms that alter titin stiffness, and titin's role in stress-sensing signaling pathways.

摘要

心肌的被动刚度在舒张期心室充盈中起着关键作用,由细胞外基质和肌节蛋白titin 决定。titin 从 Z 盘延伸到肌节的 M 带,还包含一个大的可伸展区域,充当分子弹簧,并在肌节伸展时产生被动力。这个可伸展的片段是 titin 的 I 带区域,其产生力的机械特性决定了基于 titin 的被动张力。titin 的 I 带区域的特性可以通过同工型拼接和翻译后修饰来调节,并且与舒张功能密切相关。这篇综述讨论了基于 titin 的被动张力的物理起源、改变 titin 刚度的机制以及 titin 在应激感应信号通路中的作用。

相似文献

1
Titin-based tension in the cardiac sarcomere: molecular origin and physiological adaptations.
Prog Biophys Mol Biol. 2012 Oct-Nov;110(2-3):204-17. doi: 10.1016/j.pbiomolbio.2012.08.003. Epub 2012 Aug 11.
2
Deleting titin's I-band/A-band junction reveals critical roles for titin in biomechanical sensing and cardiac function.
Proc Natl Acad Sci U S A. 2014 Oct 7;111(40):14589-94. doi: 10.1073/pnas.1411493111. Epub 2014 Sep 22.
4
Mechanical properties of titin isoforms.
Adv Exp Med Biol. 2000;481:283-300; discussion 300-4. doi: 10.1007/978-1-4615-4267-4_17.
6
Tuning the molecular giant titin through phosphorylation: role in health and disease.
Trends Cardiovasc Med. 2013 Jul;23(5):165-71. doi: 10.1016/j.tcm.2012.10.005. Epub 2013 Jan 5.
7
Increased Expression of N2BA Titin Corresponds to More Compliant Myofibrils in Athlete's Heart.
Int J Mol Sci. 2021 Oct 15;22(20):11110. doi: 10.3390/ijms222011110.
8
Titin N2A Domain and Its Interactions at the Sarcomere.
Int J Mol Sci. 2021 Jul 15;22(14):7563. doi: 10.3390/ijms22147563.
9
Titin: physiological function and role in cardiomyopathy and failure.
Heart Fail Rev. 2005 Sep;10(3):211-23. doi: 10.1007/s10741-005-5251-7.
10
M line-deficient titin causes cardiac lethality through impaired maturation of the sarcomere.
J Cell Biol. 2006 May 22;173(4):559-70. doi: 10.1083/jcb.200601014. Epub 2006 May 15.

引用本文的文献

4
Titin's cardiac-specific N2B element is critical to mechanotransduction during volume overload of the heart.
J Mol Cell Cardiol. 2024 Jun;191:40-49. doi: 10.1016/j.yjmcc.2024.04.006. Epub 2024 Apr 10.
5
Assessing Cardiac Contractility From Single Molecules to Whole Hearts.
JACC Basic Transl Sci. 2023 Oct 11;9(3):414-439. doi: 10.1016/j.jacbts.2023.07.013. eCollection 2024 Mar.
6
Mechanisms of RBM20 Cardiomyopathy: Insights From Model Systems.
Circ Genom Precis Med. 2024 Feb;17(1):e004355. doi: 10.1161/CIRCGEN.123.004355. Epub 2024 Jan 30.
8
Titin activates myosin filaments in skeletal muscle by switching from an extensible spring to a mechanical rectifier.
Proc Natl Acad Sci U S A. 2023 Feb 28;120(9):e2219346120. doi: 10.1073/pnas.2219346120. Epub 2023 Feb 22.
10
Effect of Myosin Isoforms on Cardiac Muscle Twitch of Mice, Rats and Humans.
Int J Mol Sci. 2022 Jan 20;23(3):1135. doi: 10.3390/ijms23031135.

本文引用的文献

2
Genetic variation in titin in arrhythmogenic right ventricular cardiomyopathy-overlap syndromes.
Circulation. 2011 Aug 23;124(8):876-85. doi: 10.1161/CIRCULATIONAHA.110.005405. Epub 2011 Aug 1.
3
Titin based viscosity in ventricular physiology: an integrative investigation of PEVK-actin interactions.
J Mol Cell Cardiol. 2011 Sep;51(3):428-34. doi: 10.1016/j.yjmcc.2011.06.006. Epub 2011 Jun 16.
4
Thick-filament strain and interfilament spacing in passive muscle: effect of titin-based passive tension.
Biophys J. 2011 Mar 16;100(6):1499-508. doi: 10.1016/j.bpj.2011.01.059.
5
Contribution of titin and extracellular matrix to passive pressure and measurement of sarcomere length in the mouse left ventricle.
J Mol Cell Cardiol. 2011 Apr;50(4):731-9. doi: 10.1016/j.yjmcc.2011.01.005. Epub 2011 Jan 19.
6
How sequence determines elasticity of disordered proteins.
Biophys J. 2010 Dec 15;99(12):3863-9. doi: 10.1016/j.bpj.2010.10.011.
7
Order statistics theory of unfolding of multimeric proteins.
Biophys J. 2010 Sep 22;99(6):1959-68. doi: 10.1016/j.bpj.2010.07.012.
8
Titin-isoform dependence of titin-actin interaction and its regulation by S100A1/Ca2+ in skinned myocardium.
J Biomed Biotechnol. 2010;2010:727239. doi: 10.1155/2010/727239. Epub 2010 Apr 14.
9
Tertiary and secondary structure elasticity of a six-Ig titin chain.
Biophys J. 2010 Mar 17;98(6):1085-95. doi: 10.1016/j.bpj.2009.12.4192.
10
The effects of PKCalpha phosphorylation on the extensibility of titin's PEVK element.
J Struct Biol. 2010 May;170(2):270-7. doi: 10.1016/j.jsb.2010.02.002. Epub 2010 Feb 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验