Suppr超能文献

通过对变绿链霉菌进行基因组改组来提高阿维拉霉素的产量。

Genome shuffling of Streptomyces viridochromogenes for improved production of avilamycin.

机构信息

Department of Bioengineering, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310025, China.

出版信息

Appl Microbiol Biotechnol. 2013 Jan;97(2):641-8. doi: 10.1007/s00253-012-4322-7. Epub 2012 Aug 22.

Abstract

Avilamycin is one of EU-approved antimicrobial agents in feed industry to inhibit the growth of multidrug-resistant Gram-positive bacteria. Here, we applied a process of combining ribosome engineering and genome shuffling to achieve rapid improvement of avilamycin production in Streptomyces viridochromogenes AS 4.126. The starting mutant population was generated by (60)Co γ-irradiation treatments of the spores. After five rounds of protoplast fusion with streptomycin-resistance screening, an improved recombinant E-219 was obtained and its yield of avilamycin reached 1.4 g/L, which was increased by 4.85-fold and 36.8-fold in comparison with that of the shuffling starter Co γ-316 and the ancestor AS 4.126. Furthermore, the mechanism for the improvement of shuffled strains was investigated. Recombinants with enhanced streptomycin resistance exhibited significantly higher avilamycin production and product resistance, probably due to the mutations in the ribosome protein S12. The morphological difference between the parent mutant and shuffled recombinant was observed in conidiospore, and hyphae pellets. The presence of genetic diversity among shuffled populations with varied avilamycin productivity was confirmed by randomly amplified polymorphic DNA analysis. In summary, our results demonstrated that genome shuffling combined with ribosome engineering was a powerful approach for molecular breeding of high-yield industrial strains.

摘要

阿维拉霉素是欧盟批准的饲料用抗生素之一,可抑制多重耐药革兰氏阳性菌的生长。在这里,我们应用核糖体工程和基因组改组相结合的方法,快速提高绿色产色链霉菌 AS 4.126 中的阿维拉霉素产量。起始突变体群体是通过(60)Co γ-辐照孢子产生的。经过五轮原生质体融合和链霉素抗性筛选,得到了一个改良的重组 E-219,其阿维拉霉素产量达到 1.4 g/L,与改组启动子 Co γ-316 和原始菌株 AS 4.126 相比,产量分别提高了 4.85 倍和 36.8 倍。此外,还研究了改组菌株改良的机制。具有增强的链霉素抗性的重组体表现出显著更高的阿维拉霉素产量和产物抗性,这可能是由于核糖体蛋白 S12 的突变。在分生孢子和菌丝体球之间观察到亲本突变体和改组重组体之间的形态差异。通过随机扩增多态性 DNA 分析证实了改组群体之间存在遗传多样性,其阿维拉霉素生产力也存在差异。总之,我们的结果表明,核糖体工程与基因组改组相结合是一种用于高产工业菌株分子育种的有效方法。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验