Suppr超能文献

采用气相色谱重组-嗅闻法对香气混合物进行感知特征描述和分析。

Perceptual characterization and analysis of aroma mixtures using gas chromatography recomposition-olfactometry.

机构信息

Department of Viticulture and Enology, Agricultural and Environmental Chemistry Graduate Group, University of California Davis, Davis, California, United States of America.

出版信息

PLoS One. 2012;7(8):e42693. doi: 10.1371/journal.pone.0042693. Epub 2012 Aug 17.

Abstract

This paper describes the design of a new instrumental technique, Gas Chromatography Recomposition-Olfactometry (GC-R), that adapts the reconstitution technique used in flavor chemistry studies by extracting volatiles from a sample by headspace solid-phase microextraction (SPME), separating the extract on a capillary GC column, and recombining individual compounds selectively as they elute off of the column into a mixture for sensory analysis (Figure 1). Using the chromatogram of a mixture as a map, the GC-R instrument allows the operator to "cut apart" and recombine the components of the mixture at will, selecting compounds, peaks, or sections based on retention time to include or exclude in a reconstitution for sensory analysis. Selective recombination is accomplished with the installation of a Deans Switch directly in-line with the column, which directs compounds either to waste or to a cryotrap at the operator's discretion. This enables the creation of, for example, aroma reconstitutions incorporating all of the volatiles in a sample, including instrumentally undetectable compounds as well those present at concentrations below sensory thresholds, thus correcting for the "reconstitution discrepancy" sometimes noted in flavor chemistry studies. Using only flowering lavender (Lavandula angustifola 'Hidcote Blue') as a source for volatiles, we used the instrument to build mixtures of subsets of lavender volatiles in-instrument and characterized their aroma qualities with a sensory panel. We showed evidence of additive, masking, and synergistic effects in these mixtures and of "lavender' aroma character as an emergent property of specific mixtures. This was accomplished without the need for chemical standards, reductive aroma models, or calculation of Odor Activity Values, and is broadly applicable to any aroma or flavor.

摘要

本文描述了一种新的仪器技术——气相色谱重组-嗅闻法(GC-R)的设计,该技术通过顶空固相微萃取(SPME)从样品中提取挥发性物质,在毛细管 GC 柱上分离提取物,并在化合物从柱上洗脱时选择性地将它们重新组合成混合物进行感官分析,从而适应了风味化学研究中使用的重组技术(图 1)。使用混合物的色谱图作为图谱,GC-R 仪器允许操作员随意“分割”和重组混合物的成分,根据保留时间选择化合物、峰或部分,包括或排除在感官分析的重组中。通过在柱线上直接安装一个 Dean 开关来实现选择性重组,该开关可以根据操作员的判断将化合物导向废物或低温阱。这使得可以创建例如包含样品中所有挥发性物质的香气重组物,包括仪器上无法检测到的化合物以及那些浓度低于感官阈值的化合物,从而纠正风味化学研究中有时注意到的“重组差异”。仅使用开花薰衣草(Lavandula angustifola 'Hidcote Blue')作为挥发性物质的来源,我们使用该仪器在仪器内构建薰衣草挥发性物质的子集混合物,并使用感官小组对其香气质量进行了表征。我们在这些混合物中发现了加性、掩蔽和协同作用的证据,以及作为特定混合物的突现属性的“薰衣草”香气特征。这是在不需要化学标准、还原香气模型或计算气味活性值的情况下完成的,并且广泛适用于任何香气或味道。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/847f/3422294/5863f4c6af09/pone.0042693.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验