Suppr超能文献

OsELF3-1,拟南芥早花 3 的同源基因,调控水稻的生物钟和光周期开花。

OsELF3-1, an ortholog of Arabidopsis early flowering 3, regulates rice circadian rhythm and photoperiodic flowering.

机构信息

Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China.

出版信息

PLoS One. 2012;7(8):e43705. doi: 10.1371/journal.pone.0043705. Epub 2012 Aug 17.

Abstract

Arabidopsis thaliana early flowering 3 (ELF3) as a zeitnehmer (time taker) is responsible for generation of circadian rhythm and regulation of photoperiodic flowering. There are two orthologs (OsELF3-1 and OsELF3-2) of ELF3 in rice (Oryza sativa), but their roles have not yet been fully identified. Here, we performed a functional characterization of OsELF3-1 and revealed it plays a more predominant role than OsELF3-2 in rice heading. Our results suggest OsELF3-1 can affect rice circadian systems via positive regulation of OsLHY expression and negative regulation of OsPRR1, OsPRR37, OsPRR73 and OsPRR95 expression. In addition, OsELF3-1 is involved in blue light signaling by activating early heading date 1 (Ehd1) expression to promote rice flowering under short-day (SD) conditions. Moreover, OsELF3-1 suppresses a flowering repressor grain number, plant height and heading date 7 (Ghd7) to indirectly accelerate flowering under long-day (LD) conditions. Taken together, our results indicate OsELF3-1 is essential for circadian regulation and photoperiodic flowering in rice.

摘要

拟南芥早期开花 3(ELF3)作为时间感受器(time taker),负责生成昼夜节律和调节光周期开花。在水稻(Oryza sativa)中有两个 ELF3 的同源物(OsELF3-1 和 OsELF3-2),但它们的作用尚未完全确定。在这里,我们对 OsELF3-1 进行了功能表征,并揭示了它在水稻抽穗中比 OsELF3-2 起着更主要的作用。我们的结果表明,OsELF3-1 可以通过正向调控 OsLHY 的表达和负向调控 OsPRR1、OsPRR37、OsPRR73 和 OsPRR95 的表达来影响水稻的昼夜节律系统。此外,OsELF3-1 通过激活早期抽穗日期 1(Ehd1)的表达参与蓝光信号转导,从而促进水稻在短日照(SD)条件下开花。此外,OsELF3-1 抑制开花抑制因子粒数、株高和抽穗期 7(Ghd7),从而在长日照(LD)条件下间接加速开花。总之,我们的结果表明,OsELF3-1 是水稻昼夜节律调节和光周期开花所必需的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dcd6/3422346/6138bcc1a535/pone.0043705.g001.jpg

相似文献

1
OsELF3-1, an ortholog of Arabidopsis early flowering 3, regulates rice circadian rhythm and photoperiodic flowering.
PLoS One. 2012;7(8):e43705. doi: 10.1371/journal.pone.0043705. Epub 2012 Aug 17.
2
OsLHY is involved in regulating flowering through the Hd1- and Ehd1- mediated pathways in rice (Oryza sativa L.).
Plant Sci. 2022 Feb;315:111145. doi: 10.1016/j.plantsci.2021.111145. Epub 2021 Dec 4.
3
OsELF3 is involved in circadian clock regulation for promoting flowering under long-day conditions in rice.
Mol Plant. 2013 Jan;6(1):202-15. doi: 10.1093/mp/sss062. Epub 2012 Aug 10.
4
OsCOL5 suppresses heading through modulation of Ghd7 and Ehd2, enhancing rice yield.
Theor Appl Genet. 2024 Jun 17;137(7):162. doi: 10.1007/s00122-024-04674-1.
5
The clock component OsLUX regulates rice heading through recruiting OsELF3-1 and OsELF4s to repress Hd1 and Ghd7.
J Adv Res. 2023 Jun;48:17-31. doi: 10.1016/j.jare.2022.08.001. Epub 2022 Aug 6.
7
OsBBX14 delays heading date by repressing florigen gene expression under long and short-day conditions in rice.
Plant Sci. 2016 Jun;247:25-34. doi: 10.1016/j.plantsci.2016.02.017. Epub 2016 Feb 27.
8
CONSTANS-like 9 (COL9) delays the flowering time in Oryza sativa by repressing the Ehd1 pathway.
Biochem Biophys Res Commun. 2016 Oct 14;479(2):173-178. doi: 10.1016/j.bbrc.2016.09.013. Epub 2016 Sep 13.
9
Natural variation in Hd17, a homolog of Arabidopsis ELF3 that is involved in rice photoperiodic flowering.
Plant Cell Physiol. 2012 Apr;53(4):709-16. doi: 10.1093/pcp/pcs028. Epub 2012 Mar 6.

引用本文的文献

1
Allelic Variation of Hd17 for Rice Heading Date is Caused by Natural Selection.
Rice (N Y). 2025 Mar 24;18(1):21. doi: 10.1186/s12284-025-00773-9.
5
Linking timing to nitrogen use efficiency: Rice OsEC-Ghd7-ARE1 module works on it.
Plant Physiol. 2024 Nov 4;196(3):1720-1721. doi: 10.1093/plphys/kiae488.
6
OsCOL5 suppresses heading through modulation of Ghd7 and Ehd2, enhancing rice yield.
Theor Appl Genet. 2024 Jun 17;137(7):162. doi: 10.1007/s00122-024-04674-1.
7
Timely Questions Emerging in Chronobiology: The Circadian Clock Keeps on Ticking.
J Circadian Rhythms. 2024 Apr 2;22:2. doi: 10.5334/jcr.237. eCollection 2024.
10
Compartmentation of photosynthesis gene expression in C4 maize depends on time of day.
Plant Physiol. 2023 Nov 22;193(4):2306-2320. doi: 10.1093/plphys/kiad447.

本文引用的文献

2
Mapping the core of the Arabidopsis circadian clock defines the network structure of the oscillator.
Science. 2012 Apr 6;336(6077):75-9. doi: 10.1126/science.1219075. Epub 2012 Mar 8.
3
Natural variation in Hd17, a homolog of Arabidopsis ELF3 that is involved in rice photoperiodic flowering.
Plant Cell Physiol. 2012 Apr;53(4):709-16. doi: 10.1093/pcp/pcs028. Epub 2012 Mar 6.
4
Time for a nuclear meeting: protein trafficking and chromatin dynamics intersect in the plant circadian system.
Mol Plant. 2012 May;5(3):554-65. doi: 10.1093/mp/sss010. Epub 2012 Feb 29.
5
EARLY FLOWERING4 recruitment of EARLY FLOWERING3 in the nucleus sustains the Arabidopsis circadian clock.
Plant Cell. 2012 Feb;24(2):428-43. doi: 10.1105/tpc.111.093807. Epub 2012 Feb 10.
6
Arabidopsis circadian clock protein, TOC1, is a DNA-binding transcription factor.
Proc Natl Acad Sci U S A. 2012 Feb 21;109(8):3167-72. doi: 10.1073/pnas.1200355109. Epub 2012 Feb 6.
8
Molecular dissection of the roles of phytochrome in photoperiodic flowering in rice.
Plant Physiol. 2011 Nov;157(3):1128-37. doi: 10.1104/pp.111.181792. Epub 2011 Aug 31.
9
The ELF4-ELF3-LUX complex links the circadian clock to diurnal control of hypocotyl growth.
Nature. 2011 Jul 13;475(7356):398-402. doi: 10.1038/nature10182.
10
Ehd3, encoding a plant homeodomain finger-containing protein, is a critical promoter of rice flowering.
Plant J. 2011 May;66(4):603-12. doi: 10.1111/j.1365-313X.2011.04517.x. Epub 2011 Mar 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验