Suppr超能文献

Monte Carlo simulation of embedded 241Am activity in injured palm.

作者信息

Nadar M Y, Patni H K, Akar D K, Mishra Lokpati, Singh I S, Rao D D, Sarkar P K

机构信息

Internal Dosimetry Section, Health Physics Division, Bhabha Atomic Research Centre, Mumbai 400085, India.

出版信息

Radiat Prot Dosimetry. 2013 Apr;154(2):148-56. doi: 10.1093/rpd/ncs165. Epub 2012 Aug 22.

Abstract

This paper describes a methodology to estimate embedded activity of (241)Am and Pu isotopes in a wound at an unknown depth. Theoretical calibration of an array of high-purity germanium detectors is carried out using the Monte Carlo code 'FLUKA' for a (241)Am source embedded at different depths in a soft tissue phantom of dimension 10 × 10 × 4 cm(3) simulating the palm of a worker. It is observed that, in the case of contamination due to pure (241)Am, the ratio of counts in 59.5 and 17.8 keV (Ratio 1) should be used to evaluate the depth, whereas the ratio of counts in 59.5 and 26.3 keV (Ratio 2) should be used when the contamination is due to a mixture of Pu and (241)Am compounds. Variations in the calibration factors (CFs) as well as in the Ratio 1 and Ratio 2 values are insignificant when source dimensions are varied from a point source to a 15-mm diameter circle. It is observed that tissue-equivalent polymethyl methacrylate material can be used in the phantom to estimate the embedded activity, when the activity is located at a depth of <1 cm, as the corresponding CFs do not show much variation with respect to those estimated using the phantom containing soft tissue material. In all other cases, an appropriate soft tissue-equivalent material should be used in the phantom for the estimation of CFs and ratios. The CFs thus obtained will be helpful in an accurate estimation of the depth of the wound and the activity embedded therein in the palm of a radiation worker.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验