Suppr超能文献

广谱抗病毒药物针对小核糖核酸病毒科、诺如病毒和冠状病毒的 3C 或 3C 样蛋白酶。

Broad-spectrum antivirals against 3C or 3C-like proteases of picornaviruses, noroviruses, and coronaviruses.

机构信息

Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, USA.

出版信息

J Virol. 2012 Nov;86(21):11754-62. doi: 10.1128/JVI.01348-12. Epub 2012 Aug 22.

Abstract

Phylogenetic analysis has demonstrated that some positive-sense RNA viruses can be classified into the picornavirus-like supercluster, which includes picornaviruses, caliciviruses, and coronaviruses. These viruses possess 3C or 3C-like proteases (3Cpro or 3CLpro, respectively), which contain a typical chymotrypsin-like fold and a catalytic triad (or dyad) with a Cys residue as a nucleophile. The conserved key sites of 3Cpro or 3CLpro may serve as attractive targets for the design of broad-spectrum antivirals for multiple viruses in the supercluster. We previously reported the structure-based design and synthesis of potent protease inhibitors of Norwalk virus (NV), a member of the Caliciviridae family. We report herein the broad-spectrum antiviral activities of three compounds possessing a common dipeptidyl residue with different warheads, i.e., an aldehyde (GC373), a bisulfite adduct (GC376), and an α-ketoamide (GC375), against viruses that belong to the supercluster. All compounds were highly effective against the majority of tested viruses, with half-maximal inhibitory concentrations in the high nanomolar or low micromolar range in enzyme- and/or cell-based assays and with high therapeutic indices. We also report the high-resolution X-ray cocrystal structures of NV 3CLpro-, poliovirus 3Cpro-, and transmissible gastroenteritis virus 3CLpro- GC376 inhibitor complexes, which show the compound covalently bound to a nucleophilic Cys residue in the catalytic site of the corresponding protease. We conclude that these compounds have the potential to be developed as antiviral therapeutics aimed at a single virus or multiple viruses in the picornavirus-like supercluster by targeting 3Cpro or 3CLpro.

摘要

系统发生分析表明,一些正链 RNA 病毒可以归类为类小核糖核酸病毒超家族,其中包括小核糖核酸病毒、杯状病毒和冠状病毒。这些病毒具有 3C 或 3C 样蛋白酶(分别为 3Cpro 或 3CLpro),它们含有典型的胰凝乳蛋白酶样折叠和包含 Cys 残基作为亲核体的催化三联体(或二联体)。3Cpro 或 3CLpro 的保守关键位点可能成为设计针对超家族中多种病毒的广谱抗病毒药物的有吸引力的靶标。我们之前报道了基于结构的设计和合成诺如病毒(NV)蛋白酶抑制剂的工作,NV 是杯状病毒科的一个成员。我们在此报告了三种具有共同二肽残基和不同弹头的化合物对属于超家族的病毒的广谱抗病毒活性,即醛(GC373)、亚硫酸氢盐加合物(GC376)和α-酮酰胺(GC375)。所有化合物在酶和/或细胞测定中对大多数测试的病毒均具有高度的有效性,半数最大抑制浓度在高纳摩尔或低微摩尔范围内,治疗指数高。我们还报告了 NV 3CLpro、脊髓灰质炎病毒 3Cpro 和传染性胃肠炎病毒 3CLpro-GC376 抑制剂复合物的高分辨率 X 射线共晶结构,显示化合物共价结合到相应蛋白酶催化位点的亲核 Cys 残基上。我们得出结论,这些化合物有可能通过针对 3Cpro 或 3CLpro 被开发为针对单一病毒或类小核糖核酸病毒超家族中的多种病毒的抗病毒治疗药物。

相似文献

1
Broad-spectrum antivirals against 3C or 3C-like proteases of picornaviruses, noroviruses, and coronaviruses.
J Virol. 2012 Nov;86(21):11754-62. doi: 10.1128/JVI.01348-12. Epub 2012 Aug 22.
3
Structural and inhibitor studies of norovirus 3C-like proteases.
Virus Res. 2013 Dec 26;178(2):437-44. doi: 10.1016/j.virusres.2013.09.008. Epub 2013 Sep 17.
4
Broad-spectrum inhibitors against 3C-like proteases of feline coronaviruses and feline caliciviruses.
J Virol. 2015 May;89(9):4942-50. doi: 10.1128/JVI.03688-14. Epub 2015 Feb 18.
7
Design, synthesis, and bioevaluation of viral 3C and 3C-like protease inhibitors.
Bioorg Med Chem Lett. 2013 Dec 1;23(23):6317-20. doi: 10.1016/j.bmcl.2013.09.070. Epub 2013 Sep 30.
8
Picornaviral 3C protease inhibitors and the dual 3C protease/coronaviral 3C-like protease inhibitors.
Expert Opin Ther Pat. 2010 Jan;20(1):59-71. doi: 10.1517/13543770903460323.
9
A structural study of norovirus 3C protease specificity: binding of a designed active site-directed peptide inhibitor.
Biochemistry. 2011 Jan 18;50(2):240-9. doi: 10.1021/bi1008497. Epub 2010 Dec 15.
10
Potent small molecule inhibitors against the 3C protease of foot-and-mouth disease virus.
Microbiol Spectr. 2024 Apr 2;12(4):e0337223. doi: 10.1128/spectrum.03372-23. Epub 2024 Mar 11.

引用本文的文献

3
Discovery of Small Molecules Targeting Norovirus 3CL Protease by Multi-Stage Virtual Screening.
Int J Mol Sci. 2025 Jun 12;26(12):5625. doi: 10.3390/ijms26125625.
4
Traditional Chinese medicine as a promising choice for future control of PEDV.
Virus Res. 2025 Jun;356:199572. doi: 10.1016/j.virusres.2025.199572. Epub 2025 Apr 10.
5
Structure of coxsackievirus cloverleaf RNA and 3C dimer establishes the RNA-binding mechanism of enterovirus protease 3C.
Sci Adv. 2025 Mar 14;11(11):eads6862. doi: 10.1126/sciadv.ads6862. Epub 2025 Mar 12.
6
Functionalization of a versatile fluorescent sensor for detecting protease activity and temporally gated opioid sensing.
RSC Chem Biol. 2025 Feb 18;6(4):555-562. doi: 10.1039/d4cb00276h. eCollection 2025 Apr 2.
7
Advancements in the development of antivirals against SARS-Coronavirus.
Front Cell Infect Microbiol. 2025 Jan 23;15:1520811. doi: 10.3389/fcimb.2025.1520811. eCollection 2025.
8
Identifying Natural Products as Feline Coronavirus M Inhibitors by Structural-Based Virtual Screening and Enzyme-Based Assays.
ACS Omega. 2025 Jan 10;10(2):2092-2101. doi: 10.1021/acsomega.4c08601. eCollection 2025 Jan 21.
9
Structural Analysis of Inhibitor Binding to Enterovirus-D68 3C Protease.
Viruses. 2025 Jan 8;17(1):75. doi: 10.3390/v17010075.
10
A multiplex method for rapidly identifying viral protease inhibitors.
Mol Syst Biol. 2025 Feb;21(2):158-172. doi: 10.1038/s44320-024-00082-1. Epub 2025 Jan 6.

本文引用的文献

1
Potent inhibition of norovirus 3CL protease by peptidyl α-ketoamides and α-ketoheterocycles.
Bioorg Med Chem Lett. 2012 Jul 15;22(14):4820-6. doi: 10.1016/j.bmcl.2012.05.055. Epub 2012 May 26.
2
Characterization and inhibition of norovirus proteases of genogroups I and II using a fluorescence resonance energy transfer assay.
Virology. 2012 Feb 20;423(2):125-33. doi: 10.1016/j.virol.2011.12.002. Epub 2011 Dec 24.
3
Telaprevir user's guide.
Clin Liver Dis. 2011 Aug;15(3):555-71. doi: 10.1016/j.cld.2011.05.013.
4
Design, synthesis, and evaluation of inhibitors of Norwalk virus 3C protease.
Bioorg Med Chem Lett. 2011 Sep 15;21(18):5315-9. doi: 10.1016/j.bmcl.2011.07.016. Epub 2011 Jul 14.
5
Backbone and side-chain ¹H, ¹⁵N, and ¹³C resonance assignments of Norwalk virus protease.
Biomol NMR Assign. 2012 Apr;6(1):19-21. doi: 10.1007/s12104-011-9316-3. Epub 2011 Jun 8.
6
Broad-spectrum antiviral that interferes with de novo pyrimidine biosynthesis.
Proc Natl Acad Sci U S A. 2011 Apr 5;108(14):5777-82. doi: 10.1073/pnas.1101143108. Epub 2011 Mar 21.
7
Antiviral therapy: quo vadis?
Future Med Chem. 2010 Jul;2(7):1049-53. doi: 10.4155/fmc.10.22.
8
A structural study of norovirus 3C protease specificity: binding of a designed active site-directed peptide inhibitor.
Biochemistry. 2011 Jan 18;50(2):240-9. doi: 10.1021/bi1008497. Epub 2010 Dec 15.
9
Hepatitis A virus seroprevalence by age and world region, 1990 and 2005.
Vaccine. 2010 Sep 24;28(41):6653-7. doi: 10.1016/j.vaccine.2010.08.037. Epub 2010 Aug 17.
10
Features and development of Coot.
Acta Crystallogr D Biol Crystallogr. 2010 Apr;66(Pt 4):486-501. doi: 10.1107/S0907444910007493. Epub 2010 Mar 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验