Suppr超能文献

使用低密度芯片的估算基因型对德国荷斯坦牛进行基因组预测的可靠性。

Reliability of genomic prediction for German Holsteins using imputed genotypes from low-density chips.

机构信息

Vereinigte Informationssysteme Tierhaltung w.v. (VIT), Heideweg 1, 27283 Verden, Germany; Institute of Animal Breeding and Husbandry, Christian-Albrechts-University, 24098 Kiel, Germany.

Vereinigte Informationssysteme Tierhaltung w.v. (VIT), Heideweg 1, 27283 Verden, Germany.

出版信息

J Dairy Sci. 2012 Sep;95(9):5403-5411. doi: 10.3168/jds.2012-5466.

Abstract

With the availability of single nucleotide polymorphism (SNP) marker chips, such as the Illumina BovineSNP50 BeadChip (50K), genomic evaluation has been routinely implemented in dairy cattle breeding. However, for an average dairy producer, total costs associated with the 50K chip are still too high to have all the cows genotyped and genomically evaluated. To study the accuracy of cheaper low-density chips, genotypes were simulated for 2 low-density chips, the Illumina Bovine3K BeadChip (3K) and BovineLD BeadChip (6K), according to their original marker maps. Simulated missing genotypes of the 50K chip were imputed using the programs Beagle and Findhap. Three genotype data sets were used to study imputation accuracy: the EuroGenomics data set, with 14,405 reference bulls (data set I); the smaller EuroGenomics data set, with 11,670 older reference bulls (data set II); and the data set of all genotyped German Holsteins, with 31,597 reference animals (data set III). Imputed genotypes were compared with their original ones to calculate allele error rate for validation animals in the 3 data sets. To evaluate the loss in accuracy of genomic prediction when using imputed genotypes, a genomic evaluation was conducted only for EuroGenomics data set II. Furthermore, combined genome-enhanced breeding values calculated from the original and imputed genotypes were compared. Allele error rate for EuroGenomics data set II was highest for the Findhap program on the 3K chip (3.3%) and lowest for the Beagle program on the 6K chip (0.6%). Across the data sets, Beagle was shown to be about 2 times as accurate as Findhap. Compared with the real 50K genotypes, the reduction in reliability of the genomic prediction when using the imputed genotypes was highest for Findhap on the 3K chip (5.3%) and lowest for Beagle on the 6K chip (1%) when averaged over the 12 evaluated traits. Differences in genome-enhanced breeding values of the original and imputed genotypes were largest for Findhap on the 3K chip, whereas Beagle on the 6K chip had the smallest difference. The low-density chip, 6K, gave markedly higher imputation accuracy and more accurate genomic prediction than the 3K chip. On the basis of the relatively small reduction in accuracy of genomic prediction, we would recommend the BovineLD 6K chip for large-scale genotyping as long as its costs are acceptable to breeders.

摘要

随着单核苷酸多态性 (SNP) 标记芯片的出现,如 Illumina BovineSNP50 BeadChip(50K),基因组评估已在奶牛育种中常规实施。然而,对于普通奶牛生产者来说,与 50K 芯片相关的总成本仍然太高,无法对所有奶牛进行基因分型和基因组评估。为了研究更便宜的低密度芯片的准确性,根据其原始标记图谱,对两种低密度芯片,即 Illumina Bovine3K BeadChip(3K)和 BovineLD BeadChip(6K)的基因型进行了模拟。使用程序 Beagle 和 Findhap 对 50K 芯片的模拟缺失基因型进行了估算。使用三个基因型数据集研究了估算准确性:包含 14405 头参考公牛的 EuroGenomics 数据集(数据集 I);较小的 EuroGenomics 数据集,包含 11670 头较老的参考公牛(数据集 II);以及所有已基因分型的德国荷斯坦奶牛数据集,包含 31597 头参考动物(数据集 III)。将估算的基因型与原始基因型进行比较,以计算三个数据集的验证动物的等位基因错误率。为了评估使用估算基因型进行基因组预测时准确性的损失,仅对 EuroGenomics 数据集 II 进行了基因组评估。此外,还比较了从原始和估算的基因型计算得出的综合基因组增强的育种值。对于 3K 芯片上的 Findhap 程序,EuroGenomics 数据集 II 的等位基因错误率最高(3.3%),而 6K 芯片上的 Beagle 程序最低(0.6%)。在所有数据集上,Beagle 的准确性都比 Findhap 高出约 2 倍。与真实的 50K 基因型相比,使用估算的基因型进行基因组预测的可靠性降低幅度最高的是 3K 芯片上的 Findhap(5.3%),而 6K 芯片上的 Beagle 最低(1%),这是在评估的 12 个性状上的平均值。当使用 Findhap 时,原始和估算的基因型的基因组增强的育种值之间的差异最大,而在 6K 芯片上的 Beagle 差异最小。低密度芯片 6K 比 3K 芯片具有更高的估算准确性和更准确的基因组预测。基于基因组预测准确性的相对较小降低,我们建议只要其成本可以被饲养员接受,就可以使用 BovineLD 6K 芯片进行大规模基因分型。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验