Suppr超能文献

深部盐水层中二氧化碳储存的容积

Volumetrics of CO2 storage in deep saline formations.

机构信息

National Energy Technology Laboratory-Regional University Alliance, United States.

出版信息

Environ Sci Technol. 2013 Jan 2;47(1):79-86. doi: 10.1021/es301598t. Epub 2012 Aug 24.

Abstract

Concern about the role of greenhouse gases in global climate change has generated interest in sequestering CO(2) from fossil-fuel combustion in deep saline formations. Pore space in these formations is initially filled with brine, and space to accommodate injected CO(2) must be generated by displacing brine, and to a lesser extent by compression of brine and rock. The formation volume required to store a given mass of CO(2) depends on the storage mechanism. We compare the equilibrium volumetric requirements of three end-member processes: CO(2) stored as a supercritical fluid (structural or stratigraphic trapping); CO(2) dissolved in pre-existing brine (solubility trapping); and CO(2) solubility enhanced by dissolution of calcite. For typical storage conditions, storing CO(2) by solubility trapping reduces the volume required to store the same amount of CO(2) by structural or stratigraphic trapping by about 50%. Accessibility of CO(2) to brine determines which storage mechanism (structural/stratigraphic versus solubility) dominates at a given time, which is a critical factor in evaluating CO(2) volumetric requirements and long-term storage security.

摘要

人们对温室气体在全球气候变化中所起作用的担忧,促使人们产生了从化石燃料燃烧中捕集二氧化碳并将其封存在深层盐层中的兴趣。这些地层的孔隙空间最初充满了盐水,为了容纳注入的二氧化碳,必须通过驱替盐水来产生空间,而通过压缩盐水和岩石来产生的空间则较少。存储给定质量的二氧化碳所需的地层体积取决于存储机制。我们比较了三种端元过程的平衡体积要求:以超临界流体形式存储的二氧化碳(结构或地层捕集);溶解在现有盐水中的二氧化碳(溶解度捕集);以及通过溶解方解石增强的二氧化碳溶解度。对于典型的存储条件,通过溶解度捕集存储二氧化碳可将存储相同量二氧化碳所需的体积减少约 50%,而通过结构或地层捕集存储二氧化碳。二氧化碳对盐水的可及性决定了在给定时间哪种存储机制(结构/地层与溶解度)占主导地位,这是评估二氧化碳体积要求和长期存储安全性的关键因素。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验