Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore California 94550, United States.
Environ Sci Technol. 2013 Jan 2;47(1):252-61. doi: 10.1021/es301269k.
The Mount Simon sandstone and Eau Claire shale formations are target storage and cap rock formations for the Illinois Basin-Decatur Geologic Carbon Sequestration Project. We reacted rock samples with brine and supercritical CO(2) at 51 °C and 19.5 MPa to access the reactivity of these formations at storage conditions and to address the applicability of using published kinetic and thermodynamic constants to predict geochemical alteration that may occur during storage by quantifying parameter uncertainty against experimental data. Incongruent dissolution of iron-rich clays and formation of secondary clays and amorphous silica will dominate geochemical alterations at this CO(2) storage site in CO(2)-rich brines. The surrogate iron-rich clay in the model required significant adjustments to its thermodynamic constants and inclusion of incongruent reaction terms to capture the change in solution composition under acid CO(2) conditions. This result emphasizes the need for experiments that constrain the conceptual geochemical model, calibrate mean parameter values, and quantify parameter uncertainty in reactive-transport simulations that will be used to estimate long-term CO(2) trapping mechanisms and changes in porosity and permeability.
西蒙山砂岩和欧克莱尔页岩地层是伊利诺伊盆地-迪凯特地质碳封存项目的目标储层和盖层。我们将岩样与卤水和超临界 CO2 在 51°C 和 19.5 MPa 下进行反应,以研究这些地层在储存条件下的反应性,并通过用实验数据量化参数不确定性来解决使用已发表的动力学和热力学常数来预测储存过程中可能发生的地球化学变化的适用性。在富含 CO2 的卤水中,富铁粘土的非等溶解和次生粘土及无定形二氧化硅的形成将主导该 CO2 储存点的地球化学变化。模型中替代富铁粘土需要对其热力学常数进行重大调整,并包括非等反应项,以捕获酸性 CO2 条件下溶液组成的变化。这一结果强调了需要进行实验来约束概念性地球化学模型、校准平均参数值,并量化反应性传输模拟中的参数不确定性,这些模拟将用于估计长期 CO2 捕获机制以及孔隙度和渗透率的变化。