Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA.
Mutat Res. 2012 Sep 1;737(1-2):25-33. doi: 10.1016/j.mrfmmm.2012.08.002. Epub 2012 Aug 14.
N-(Deoxyguanosin-8-yl)-1-aminopyrene (dG(AP)) is the predominant nitro polyaromatic hydrocarbon product generated from the air pollutant 1-nitropyrene reacting with DNA. Previous studies have shown that dG(AP) induces genetic mutations in bacterial and mammalian cells. One potential source of these mutations is the error-prone bypass of dG(AP) lesions catalyzed by the low-fidelity Y-family DNA polymerases. To provide a comparative analysis of the mutagenic potential of the translesion DNA synthesis (TLS) of dG(AP), we employed short oligonucleotide sequencing assays (SOSAs) with the model Y-family DNA polymerase from Sulfolobus solfataricus, DNA Polymerase IV (Dpo4), and the human Y-family DNA polymerases eta (hPolη), kappa (hPolκ), and iota (hPolι). Relative to undamaged DNA, all four enzymes generated far more mutations (base deletions, insertions, and substitutions) with a DNA template containing a site-specifically placed dG(AP). Opposite dG(AP) and at an immediate downstream template position, the most frequent mutations made by the three human enzymes were base deletions and the most frequent base substitutions were dAs for all enzymes. Based on the SOSA data, Dpo4 was the least error-prone Y-family DNA polymerase among the four enzymes during the TLS of dG(AP). Among the three human Y-family enzymes, hPolκ made the fewest mutations at all template positions except opposite the lesion site. hPolκ was significantly less error-prone than hPolι and hPolη during the extension of dG(AP) bypass products. Interestingly, the most frequent mutations created by hPolι at all template positions were base deletions. Although hRev1, the fourth human Y-family enzyme, could not extend dG(AP) bypass products in our standing start assays, it preferentially incorporated dCTP opposite the bulky lesion. Collectively, these mutagenic profiles suggest that hPolk and hRev1 are the most suitable human Y-family DNA polymerases to perform TLS of dG(AP) in humans.
N-(脱氧鸟嘌呤-8-基)-1-氨基芘(dG(AP))是空气污染物 1-硝基芘与 DNA 反应生成的主要硝基多环芳烃产物。先前的研究表明,dG(AP)会在细菌和哺乳动物细胞中诱导基因突变。这些突变的一个潜在来源是低保真度 Y 家族 DNA 聚合酶催化的 dG(AP)损伤的易错旁路。为了对 dG(AP)的跨损伤 DNA 合成(TLS)的诱变潜力进行比较分析,我们使用了来自 Sulfolobus solfataricus 的模型 Y 家族 DNA 聚合酶、DNA 聚合酶 IV(Dpo4)以及人类 Y 家族 DNA 聚合酶 eta(hPolη)、kappa(hPolκ)和 iota(hPolι)的短寡核苷酸测序分析(SOSA)。与未受损的 DNA 相比,所有四种酶在含有特异性放置的 dG(AP)的 DNA 模板中产生了更多的突变(碱基缺失、插入和取代)。在 dG(AP)的相反位置和模板的下游直接位置,三种人类酶最常见的突变是碱基缺失,所有酶最常见的碱基取代是 dAs。根据 SOSA 数据,在 dG(AP)的 TLS 过程中,Dpo4 是四种酶中最不易出错的 Y 家族 DNA 聚合酶。在三种人类 Y 家族酶中,除了损伤位点,hPolκ 在所有模板位置产生的突变最少。在 dG(AP)旁路产物的延伸过程中,hPolκ 比 hPolι 和 hPolη 的错误倾向要小得多。有趣的是,hPolι 在所有模板位置产生的最常见突变是碱基缺失。虽然人类的第四种 Y 家族酶 hRev1 不能在我们的起始延伸测定中延伸 dG(AP)旁路产物,但它优先在大体积损伤的对面掺入 dCTP。总的来说,这些诱变谱表明,hPolk 和 hRev1 是人类最适合进行 dG(AP)TLS 的 Y 家族 DNA 聚合酶。