Suppr超能文献

通过位点特异性生成的芳烃(3-硝基苯并蒽酮和4-氨基联苯)DNA加合物进行的易错和无错跨损伤DNA合成

Error-Prone and Error-Free Translesion DNA Synthesis over Site-Specifically Created DNA Adducts of Aryl Hydrocarbons (3-Nitrobenzanthrone and 4-Aminobiphenyl).

作者信息

Yagi Takashi, Fujikawa Yoshihiro, Sawai Tomoko, Takamura-Enya Takeji, Ito-Harashima Sayoko, Kawanishi Masanobu

机构信息

Department of Biology, Graduate School of Science, Osaka Prefecture University, Sakai, Osaka, Japan.

Department of Applied Chemistry, Kanagawa Institute of Technology, Atsugi, Kanagawa, Japan.

出版信息

Toxicol Res. 2017 Oct;33(4):265-272. doi: 10.5487/TR.2017.33.4.265. Epub 2015 Oct 15.

Abstract

Aryl hydrocarbons such as 3-nitrobenzanthrone (NBA), 4-aminobiphenyl (ABP), acetylaminofluorene (AAF), benzo(a)pyrene (BaP), and 1-nitropyrene (NP) form bulky DNA adducts when absorbed by mammalian cells. These chemicals are metabolically activated to reactive forms in mammalian cells and preferentially get attached covalently to the or C8 positions of guanine or the position of adenine. The proportion of and C8 guanine adducts in DNA differs among chemicals. Although these adducts block DNA replication, cells have a mechanism allowing to continue replication by bypassing these adducts: translesion DNA synthesis (TLS). TLS is performed by translesion DNA polymerases-Pol η, κ, ι, and ζ and Rev1-in an error-free or error-prone manner. Regarding the NBA adducts, namely, 2-(2-deoxyguanosin--yl)-3-aminobenzanthrone (dG--ABA) and -(2-deoxyguanosin-8-yl)-3-aminobenzanthrone (dG-C8-ABA), dG--ABA is produced more often than dG-C8-ABA, whereas dG-C8-ABA blocks DNA replication more strongly than dG--ABA. dG--ABA allows for a less error-prone bypass than dG-C8-ABA does. Pol η and κ are stronger contributors to TLS over dG-C8-ABA, and Pol κ bypasses dG-C8-ABA in an error-prone manner. TLS efficiency and error-proneness are affected by the sequences surrounding the adduct, as demonstrated in our previous study on an ABP adduct, -(2-deoxyguanosine-8-yl)-4-aminobiphenyl (dG-C8-ABP). Elucidation of the general mechanisms determining efficiency, error-proneness, and the polymerases involved in TLS over various adducts is the next step in the research on TLS. These TLS studies will clarify the mechanisms underlying aryl hydrocarbon mutagenesis and carcinogenesis in more detail.

摘要

诸如3-硝基苯并蒽酮(NBA)、4-氨基联苯(ABP)、乙酰氨基芴(AAF)、苯并[a]芘(BaP)和1-硝基芘(NP)等芳基烃类被哺乳动物细胞吸收后会形成大分子DNA加合物。这些化学物质在哺乳动物细胞中被代谢激活为活性形式,并优先共价连接到鸟嘌呤的N2或C8位置或腺嘌呤的N6位置。DNA中N2和C8鸟嘌呤加合物的比例因化学物质而异。尽管这些加合物会阻断DNA复制,但细胞有一种机制可以通过绕过这些加合物来继续复制:跨损伤DNA合成(TLS)。TLS由跨损伤DNA聚合酶——Pol η、κ、ι和ζ以及Rev1以无错误或易出错的方式进行。关于NBA加合物,即2-(2-脱氧鸟苷-N2-基)-3-氨基苯并蒽酮(dG-N2-ABA)和N6-(2-脱氧鸟苷-8-基)-3-氨基苯并蒽酮(dG-C8-ABA),dG-N2-ABA的生成频率比dG-C8-ABA更高,而dG-C8-ABA比dG-N2-ABA更强烈地阻断DNA复制。与dG-C8-ABA相比,dG-N2-ABA允许以较低的错误倾向进行绕过。在绕过dG-C8-ABA方面,Pol η和κ对TLS的贡献更大,并且Pol κ以易出错的方式绕过dG-C8-ABA。如我们先前关于ABP加合物N6-(2-脱氧鸟苷-8-基)-4-氨基联苯(dG-C8-ABP)的研究所表明的,TLS效率和错误倾向受加合物周围序列的影响。阐明决定TLS效率、错误倾向以及参与绕过各种加合物的聚合酶的一般机制是TLS研究的下一步。这些TLS研究将更详细地阐明芳基烃诱变和致癌作用的潜在机制。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/326e/5654197/1e576d97095a/tr-33-265f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验