Suppr超能文献

听觉恐惧条件反射中,感觉输入分布和内在连接在外侧杏仁核中的作用:一项计算研究。

Role of sensory input distribution and intrinsic connectivity in lateral amygdala during auditory fear conditioning: a computational study.

机构信息

Department of Electrical & Computer Engineering, University of Missouri, Columbia, MO 65211, United States.

出版信息

Neuroscience. 2012 Nov 8;224:249-67. doi: 10.1016/j.neuroscience.2012.08.030. Epub 2012 Aug 21.

Abstract

We propose a novel reduced-order neuronal network modeling framework that includes an enhanced firing rate model and a corresponding synaptic calcium-based synaptic learning rule. Specifically, we propose enhancements to the Wilson-Cowan firing-rate neuron model that permit full spike-frequency adaptation seen in biological lateral amygdala (LA) neurons, while being sufficiently general to accommodate other spike-frequency patterns. We also report a technique to incorporate calcium-dependent plasticity in the synapses of the network using a regression scheme to link firing rate to postsynaptic calcium. Together, the single-cell model and the synaptic learning scheme constitute a general framework to develop computationally efficient neuronal networks that employ biologically realistic synaptic learning. The reduced-order modeling framework was validated using a previously reported biophysical conductance-based neuronal network model of a rodent LA that modeled features of Pavlovian conditioning and extinction of auditory fear (Li et al., 2009). The framework was then used to develop a larger LA network model to investigate the roles of tone and shock distributions and of intrinsic connectivity in auditory fear learning. The model suggested combinations of tone and shock densities that would provide experimental estimates of tone responsive and conditioned cell proportions. Furthermore, it provided several insights including how intrinsic connectivity might help distribute sensory inputs to produce conditioned responses in cells that do not directly receive both tone and shock inputs, and how a balance between potentiation of excitation and inhibition prevents stimulus generalization during fear learning.

摘要

我们提出了一种新的降阶神经元网络建模框架,该框架包括增强的发放率模型和相应的基于突触钙的突触学习规则。具体来说,我们对 Wilson-Cowan 发放率神经元模型进行了改进,使其能够模拟生物外侧杏仁核 (LA) 神经元中所见的完全尖峰频率适应,同时又足够通用以适应其他尖峰频率模式。我们还报告了一种使用回归方案将钙依赖性可塑性纳入网络突触的技术,该方案将发放率与突触后钙联系起来。单细胞模型和突触学习方案共同构成了一个通用框架,用于开发采用生物现实的突触学习的计算高效神经元网络。该降阶建模框架使用先前报道的啮齿动物 LA 的基于生物物理电导率的神经元网络模型进行了验证,该模型模拟了条件反射和听觉恐惧消退的特征 (Li 等人,2009)。然后,该框架被用于开发更大的 LA 网络模型,以研究音调分布和电击分布以及内在连通性在听觉恐惧学习中的作用。该模型提出了音调和电击密度的组合,这些组合可以提供实验估计的对音调反应和条件细胞的比例。此外,它还提供了一些见解,包括内在连通性如何帮助将感觉输入分布到不直接接收音调和电击输入的细胞中以产生条件反应,以及兴奋和抑制的增强之间的平衡如何防止在恐惧学习过程中刺激泛化。

相似文献

1
Role of sensory input distribution and intrinsic connectivity in lateral amygdala during auditory fear conditioning: a computational study.
Neuroscience. 2012 Nov 8;224:249-67. doi: 10.1016/j.neuroscience.2012.08.030. Epub 2012 Aug 21.
2
Synaptic competition in the lateral amygdala and the stimulus specificity of conditioned fear: a biophysical modeling study.
Brain Struct Funct. 2016 May;221(4):2163-82. doi: 10.1007/s00429-015-1037-4. Epub 2015 Apr 10.
3
6
An organization of visual and auditory fear conditioning in the lateral amygdala.
Neurobiol Learn Mem. 2014 Dec;116:1-13. doi: 10.1016/j.nlm.2014.07.008. Epub 2014 Jul 27.
9
Fear learning induces synaptic potentiation between engram neurons in the rat lateral amygdala.
Nat Neurosci. 2024 Jul;27(7):1309-1317. doi: 10.1038/s41593-024-01676-6. Epub 2024 Jun 13.

引用本文的文献

1
Basolateral amygdala oscillations enable fear learning in a biophysical model.
bioRxiv. 2024 Oct 4:2023.04.28.538604. doi: 10.1101/2023.04.28.538604.
2
A model of amygdala function following plastic changes at specific synapses during extinction.
Neurobiol Stress. 2019 Apr 1;10:100159. doi: 10.1016/j.ynstr.2019.100159. eCollection 2019 Feb.
3
Biologically based neural circuit modelling for the study of fear learning and extinction.
NPJ Sci Learn. 2016;1. doi: 10.1038/npjscilearn.2016.15. Epub 2016 Nov 9.
4
Mechanisms of memory storage in a model perirhinal network.
Brain Struct Funct. 2017 Jan;222(1):183-200. doi: 10.1007/s00429-016-1210-4. Epub 2016 Mar 12.
5
Synaptic competition in the lateral amygdala and the stimulus specificity of conditioned fear: a biophysical modeling study.
Brain Struct Funct. 2016 May;221(4):2163-82. doi: 10.1007/s00429-015-1037-4. Epub 2015 Apr 10.

本文引用的文献

1
Context-dependent encoding of fear and extinction memories in a large-scale network model of the basal amygdala.
PLoS Comput Biol. 2011 Mar;7(3):e1001104. doi: 10.1371/journal.pcbi.1001104. Epub 2011 Mar 17.
2
Reduced order modeling of passive and quasi-active dendrites for nervous system simulation.
J Comput Neurosci. 2011 Oct;31(2):247-71. doi: 10.1007/s10827-010-0309-5. Epub 2011 Jan 12.
3
Spike timing dependent plasticity: a consequence of more fundamental learning rules.
Front Comput Neurosci. 2010 Jul 1;4. doi: 10.3389/fncom.2010.00019. eCollection 2010.
4
Discriminative auditory fear learning requires both tuned and nontuned auditory pathways to the amygdala.
J Neurosci. 2010 Jul 21;30(29):9782-7. doi: 10.1523/JNEUROSCI.1037-10.2010.
6
Morphologically accurate reduced order modeling of spiking neurons.
J Comput Neurosci. 2010 Jun;28(3):477-94. doi: 10.1007/s10827-010-0229-4. Epub 2010 Mar 19.
7
Overgeneralization of conditioned fear as a pathogenic marker of panic disorder.
Am J Psychiatry. 2010 Jan;167(1):47-55. doi: 10.1176/appi.ajp.2009.09030410. Epub 2009 Nov 16.
8
Toward a microscopic model of bidirectional synaptic plasticity.
Proc Natl Acad Sci U S A. 2009 Aug 18;106(33):14091-5. doi: 10.1073/pnas.0905988106. Epub 2009 Jul 30.
9
The Wilson-Cowan model, 36 years later.
Biol Cybern. 2009 Jul;101(1):1-2. doi: 10.1007/s00422-009-0328-3. Epub 2009 Aug 7.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验