Suppr超能文献

尖峰神经元的形态精确降阶建模。

Morphologically accurate reduced order modeling of spiking neurons.

作者信息

Kellems Anthony R, Chaturantabut Saifon, Sorensen Danny C, Cox Steven J

机构信息

Rice University, 6100 Main Street, Houston, TX 77005, USA.

出版信息

J Comput Neurosci. 2010 Jun;28(3):477-94. doi: 10.1007/s10827-010-0229-4. Epub 2010 Mar 19.

Abstract

Accurately simulating neurons with realistic morphological structure and synaptic inputs requires the solution of large systems of nonlinear ordinary differential equations. We apply model reduction techniques to recover the complete nonlinear voltage dynamics of a neuron using a system of much lower dimension. Using a proper orthogonal decomposition, we build a reduced-order system from salient snapshots of the full system output, thus reducing the number of state variables. A discrete empirical interpolation method is then used to reduce the complexity of the nonlinear term to be proportional to the number of reduced variables. Together these two techniques allow for up to two orders of magnitude dimension reduction without sacrificing the spatially-distributed input structure, with an associated order of magnitude speed-up in simulation time. We demonstrate that both nonlinear spiking behavior and subthreshold response of realistic cells are accurately captured by these low-dimensional models.

摘要

精确模拟具有逼真形态结构和突触输入的神经元需要求解大型非线性常微分方程组。我们应用模型降阶技术,通过一个低得多维度的系统来恢复神经元完整的非线性电压动态。利用适当正交分解,我们从全系统输出的显著快照构建一个降阶系统,从而减少状态变量的数量。然后使用离散经验插值方法将非线性项的复杂度降低到与降阶变量的数量成比例。这两种技术结合起来,在不牺牲空间分布输入结构的情况下,可实现高达两个数量级的降维,并使模拟时间相应加快一个数量级。我们证明,这些低维模型能够准确捕捉真实细胞的非线性脉冲行为和阈下响应。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验