Suppr超能文献

DNA连接酶I,即复制性DNA连接酶。

DNA ligase I, the replicative DNA ligase.

作者信息

Howes Timothy R L, Tomkinson Alan E

机构信息

Biomedical Sciences Graduate Program, University of New Mexico, Cancer Research Facility MSC08 4640, 1 University of New Mexico, Albuquerque, NM, 87131-0001, USA,

出版信息

Subcell Biochem. 2012;62:327-41. doi: 10.1007/978-94-007-4572-8_17.

Abstract

Multiple DNA ligation events are required to join the Okazaki fragments generated during lagging strand DNA synthesis. In eukaryotes, this is primarily carried out by members of the DNA ligase I family. The C-terminal catalytic region of these enzymes is composed of three domains: a DNA binding domain, an adenylation domain and an OB-fold domain. In the absence of DNA, these domains adopt an extended structure but transition into a compact ring structure when they engage a DNA nick, with each of the domains contacting the DNA. The non-catalytic N-terminal region of eukaryotic DNA ligase I is responsible for the specific participation of these enzymes in DNA replication. This proline-rich unstructured region contains the nuclear localization signal and a PCNA interaction motif that is critical for localization to replication foci and efficient joining of Okazaki fragments. DNA ligase I initially engages the PCNA trimer via this interaction motif which is located at the extreme N-terminus of this flexible region. It is likely that this facilitates an additional interaction between the DNA binding domain and the PCNA ring. The similar size and shape of the rings formed by the PCNA trimer and the DNA ligase I catalytic region when it engages a DNA nick suggest that these proteins interact to form a double-ring structure during the joining of Okazaki fragments. DNA ligase I also interacts with replication factor C, the factor that loads the PCNA trimeric ring onto DNA. This interaction, which is regulated by phosphorylation of the non-catalytic N-terminus of DNA ligase I, also appears to be critical for DNA replication.

摘要

需要多个DNA连接事件来连接滞后链DNA合成过程中产生的冈崎片段。在真核生物中,这主要由DNA连接酶I家族的成员来完成。这些酶的C端催化区域由三个结构域组成:一个DNA结合结构域、一个腺苷化结构域和一个OB折叠结构域。在没有DNA的情况下,这些结构域呈伸展结构,但当它们与DNA切口结合时会转变为紧密的环状结构,每个结构域都与DNA接触。真核生物DNA连接酶I的非催化N端区域负责这些酶在DNA复制中的特异性参与。这个富含脯氨酸的无结构区域包含核定位信号和一个PCNA相互作用基序,该基序对于定位于复制位点和冈崎片段的有效连接至关重要。DNA连接酶I最初通过位于这个柔性区域最N端的这个相互作用基序与PCNA三聚体结合。这可能促进了DNA结合结构域与PCNA环之间的额外相互作用。PCNA三聚体形成的环与DNA连接酶I催化区域与DNA切口结合时形成的环具有相似的大小和形状,这表明这些蛋白质在冈崎片段连接过程中相互作用形成双环结构。DNA连接酶I还与复制因子C相互作用,复制因子C是将PCNA三聚体环加载到DNA上的因子。这种相互作用受DNA连接酶I非催化N端磷酸化的调节,似乎对DNA复制也至关重要。

相似文献

1
DNA ligase I, the replicative DNA ligase.
Subcell Biochem. 2012;62:327-41. doi: 10.1007/978-94-007-4572-8_17.
2
The C-terminal domain of yeast PCNA is required for physical and functional interactions with Cdc9 DNA ligase.
Nucleic Acids Res. 2007;35(5):1624-37. doi: 10.1093/nar/gkm006. Epub 2007 Feb 18.
4
Dynamic DNA-bound PCNA complexes co-ordinate Okazaki fragment synthesis, processing and ligation.
J Mol Biol. 2020 Dec 4;432(24):166698. doi: 10.1016/j.jmb.2020.10.032. Epub 2020 Nov 4.
5
Replication-Coupled PCNA Unloading by the Elg1 Complex Occurs Genome-wide and Requires Okazaki Fragment Ligation.
Cell Rep. 2015 Aug 4;12(5):774-87. doi: 10.1016/j.celrep.2015.06.066. Epub 2015 Jul 23.
6
The DNA binding domain of human DNA ligase I interacts with both nicked DNA and the DNA sliding clamps, PCNA and hRad9-hRad1-hHus1.
DNA Repair (Amst). 2009 Aug 6;8(8):912-9. doi: 10.1016/j.dnarep.2009.05.002. Epub 2009 Jun 11.
8
Cryo-EM structures and biochemical insights into heterotrimeric PCNA regulation of DNA ligase.
Structure. 2022 Mar 3;30(3):371-385.e5. doi: 10.1016/j.str.2021.11.002. Epub 2021 Nov 26.

引用本文的文献

1
Probing the mechanism of nick searching by LIG1 at the single-molecule level.
Nucleic Acids Res. 2024 Nov 11;52(20):12604-12615. doi: 10.1093/nar/gkae865.
4
The DNA binding domain and the C-terminal region of DNA Ligase IV specify its role in V(D)J recombination.
PLoS One. 2023 Feb 24;18(2):e0282236. doi: 10.1371/journal.pone.0282236. eCollection 2023.
5
DNA replication: Mechanisms and therapeutic interventions for diseases.
MedComm (2020). 2023 Feb 5;4(1):e210. doi: 10.1002/mco2.210. eCollection 2023 Feb.
6
Case report: Severe combined immunodeficiency with ligase 1 deficiency and Omenn-like manifestation.
Front Immunol. 2022 Oct 19;13:1033338. doi: 10.3389/fimmu.2022.1033338. eCollection 2022.
7
Proteogenomic Markers of Chemotherapy Resistance and Response in Triple-Negative Breast Cancer.
Cancer Discov. 2022 Nov 2;12(11):2586-2605. doi: 10.1158/2159-8290.CD-22-0200.
9
Molecular docking analysis of DNA ligase from Staphylococcus aureus with identical polysaccharides.
Bioinformation. 2020 Sep 30;16(9):719-724. doi: 10.6026/97320630016719. eCollection 2020.
10
Alternative Non-Homologous End-Joining: Error-Prone DNA Repair as Cancer's Achilles' Heel.
Cancers (Basel). 2021 Mar 19;13(6):1392. doi: 10.3390/cancers13061392.

本文引用的文献

1
Crucial role for DNA ligase III in mitochondria but not in Xrcc1-dependent repair.
Nature. 2011 Mar 10;471(7337):245-8. doi: 10.1038/nature09794.
2
DNA ligase III is critical for mtDNA integrity but not Xrcc1-mediated nuclear DNA repair.
Nature. 2011 Mar 10;471(7337):240-4. doi: 10.1038/nature09773.
3
The DNA binding domain of human DNA ligase I interacts with both nicked DNA and the DNA sliding clamps, PCNA and hRad9-hRad1-hHus1.
DNA Repair (Amst). 2009 Aug 6;8(8):912-9. doi: 10.1016/j.dnarep.2009.05.002. Epub 2009 Jun 11.
6
Eukaryotic DNA ligases: structural and functional insights.
Annu Rev Biochem. 2008;77:313-38. doi: 10.1146/annurev.biochem.77.061306.123941.
7
A conserved physical and functional interaction between the cell cycle checkpoint clamp loader and DNA ligase I of eukaryotes.
J Biol Chem. 2007 Aug 3;282(31):22721-30. doi: 10.1074/jbc.M703774200. Epub 2007 Jun 8.
8
The C-terminal domain of yeast PCNA is required for physical and functional interactions with Cdc9 DNA ligase.
Nucleic Acids Res. 2007;35(5):1624-37. doi: 10.1093/nar/gkm006. Epub 2007 Feb 18.
10
Mechanism of stimulation of human DNA ligase I by the Rad9-rad1-Hus1 checkpoint complex.
J Biol Chem. 2006 Jul 28;281(30):20865-20872. doi: 10.1074/jbc.M602289200. Epub 2006 May 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验