Commenges Daniel, Hejblum Boris P
INSERM, ISPED, Centre INSERM U-897-Epidmilogie-Biostatistique, Bordeaux 33000, France.
Lifetime Data Anal. 2013 Jan;19(1):1-18. doi: 10.1007/s10985-012-9227-3. Epub 2012 Aug 24.
We propose an evidence synthesis approach through a degradation model to estimate causal influences of physiological factors on myocardial infarction (MI) and coronary heart disease (CHD). For instance several studies give incidences of MI and CHD for different age strata, other studies give relative or absolute risks for strata of main risk factors of MI or CHD. Evidence synthesis of several studies allows incorporating these disparate pieces of information into a single model. For doing this we need to develop a sufficiently general dynamical model; we also need to estimate the distribution of explanatory factors in the population. We develop a degradation model for both MI and CHD using a Brownian motion with drift, and the drift is modeled as a function of indicators of obesity, lipid profile, inflammation and blood pressure. Conditionally on these factors the times to MI or CHD have inverse Gaussian ([Formula: see text]) distributions. The results we want to fit are generally not conditional on all the factors and thus we need marginal distributions of the time of occurrence of MI and CHD; this leads us to manipulate the inverse Gaussian normal distribution ([Formula: see text]) (an [Formula: see text] whose drift parameter has a normal distribution). Another possible model arises if a factor modifies the threshold. This led us to define an extension of [Formula: see text] obtained when both drift and threshold parameters have normal distributions. We applied the model to results published in five important studies of MI and CHD and their risk factors. The fit of the model using the evidence synthesis approach was satisfactory and the effects of the four risk factors were highly significant.
我们提出一种通过降解模型进行证据综合的方法,以估计生理因素对心肌梗死(MI)和冠心病(CHD)的因果影响。例如,几项研究给出了不同年龄层的MI和CHD发病率,其他研究给出了MI或CHD主要危险因素分层的相对或绝对风险。对几项研究进行证据综合可将这些不同的信息整合到一个单一模型中。为此,我们需要开发一个足够通用的动态模型;我们还需要估计总体中解释因素的分布。我们使用带漂移的布朗运动为MI和CHD开发了一个降解模型,并且将漂移建模为肥胖、血脂谱、炎症和血压指标的函数。在这些因素的条件下,MI或CHD的发病时间具有逆高斯([公式:见原文])分布。我们想要拟合的结果通常并非以所有因素为条件,因此我们需要MI和CHD发病时间的边际分布;这使我们要处理逆高斯正态分布([公式:见原文])(一种其漂移参数具有正态分布的[公式:见原文])。如果一个因素修改了阈值,则会出现另一种可能的模型。这使我们定义了[公式:见原文]的一种扩展,它是在漂移参数和阈值参数均具有正态分布时得到的。我们将该模型应用于五项关于MI和CHD及其危险因素的重要研究中发表的结果。使用证据综合方法进行模型拟合的效果令人满意,并且四个危险因素产生的影响非常显著。