Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.
Ecology. 2012 Jul;93(7):1550-9. doi: 10.1890/10-2135.1.
Investigating how arbuscular mycorrhizal fungi (AMF)-plant interactions vary with edaphic conditions provides an opportunity to test the context-dependency of interspecific interactions. The relationship between AMF and their host plants in the context of other soil microbes was studied along a gradient of heavy metal contamination originating at the site of zinc smelters that operated for a century. The site is currently under restoration. Native C3 grasses have reestablished, and C4 grasses native to the region but not the site were introduced. Interactions involving the native mycorrhizal fungi, non-mycorrhizal soil microbes, soil, one C3 grass (Deschampsia flexuosa), and one C4 grass (Sorghastrum nutans) were investigated using soils from the two extremes of the contamination gradient in a full factorial greenhouse experiment. After 12 weeks, plant biomass and root colonization by AMF and non-mycorrhizal microbes were measured. Plants from both species grew much larger in soil from low-contaminated (LC) origin than high-contaminated (HC) origin. For S. nutans, the addition of a non-AMF soil microbial wash of either origin increased the efficacy of AMF from LC soils but decreased the efficacy of AMF from HC soils in promoting plant growth. Furthermore, there was high mortality of S. nutans in HC soil, where plants with AMF from HC died sooner. For D. flexuosa, plant biomass did not vary with AMF source or the microbial wash treatment or their interaction. While AMF origin did not affect root colonization of D. flexuosa by AMF, the presence and origin of AMF did affect the number of non-mycorrhizal (NMF) morphotypes and NMF root colonization. Adding non-AMF soil biota reduced Zn concentrations in shoots of D. flexuosa. Thus the non-AMF biotic context affected heavy metal sequestration and associated NMF in D. flexuosa, and it interacted with AMF to affect plant biomass in S. nutans. Our results should be useful for improving our basic ecological understanding of the context-dependency of plant-soil interactions and are potentially important in restoration of heavy-metal-contaminated sites.
研究丛枝菌根真菌(AMF)-植物相互作用如何随土壤条件而变化,为检验种间相互作用的情境依赖性提供了机会。在锌冶炼厂运营一个世纪的地点起源的重金属污染梯度上,研究了 AMF 与其宿主植物在其他土壤微生物背景下的关系。该地点目前正在恢复中。原生 C3 草已重新建立,引入了该地区但非该地点的原生 C4 草。在一个全因子温室实验中,使用来自污染梯度两个极端的土壤,研究了涉及原生菌根真菌、非菌根土壤微生物、土壤、一种 C3 草(荻)和一种 C4 草(高粱)的相互作用。12 周后,测量了植物生物量和 AMF 和非菌根微生物对根系的定殖。与高污染(HC)起源相比,来自低污染(LC)起源的土壤中,两种植物的生长都大得多。对于高粱,来自 LC 土壤的 AMF 的非 AMF 土壤微生物洗提物的添加增加了促进植物生长的 AMF 的功效,但降低了来自 HC 土壤的 AMF 的功效。此外,高粱在 HC 土壤中的死亡率很高,在 HC 土壤中,来自 HC 的 AMF 的植物死亡更早。对于荻,AMF 来源或微生物洗提物处理及其相互作用均不影响植物生物量。虽然 AMF 来源不影响 AMF 对荻的根系定殖,但 AMF 的存在和来源确实影响了非菌根(NMF)形态和 NMF 根系定殖的数量。添加非 AMF 土壤生物群降低了荻地上部分的锌浓度。因此,非 AMF 生物背景影响了荻中重金属的螯合作用以及相关的 NMF,并且它与 AMF 相互作用影响了高粱中的植物生物量。我们的结果对于提高我们对植物-土壤相互作用情境依赖性的基本生态理解应该是有用的,并且在重金属污染场地的恢复中可能具有重要意义。