Suppr超能文献

用于自适应多尺度分子动力学模拟的能量外推方案。

Energy extrapolation schemes for adaptive multi-scale molecular dynamics simulations.

机构信息

Laboratoire de Chimie, UMR 5182 CNRS, Ecole Normale Supérieure de Lyon, 46, Allée d'Italie, 69364 Lyon Cedex 07, France.

出版信息

J Chem Phys. 2012 Aug 21;137(7):074111. doi: 10.1063/1.4739743.

Abstract

This paper evaluates simple schemes to extrapolate potential energy values using the set of energies and forces extracted from a molecular dynamics trajectory. In general, such a scheme affords the maximum amount of information about a molecular system at minimal computational cost. More specifically, schemes like this are very important in the field of adaptive multi-scale molecular dynamics simulations. In this field, often the computation of potential energy values at certain trajectory points is not required for the simulation itself, but solely for the a posteriori analysis of the simulation data. Extrapolating the values at these points from the available data can save considerable computational time. A set of extrapolation schemes are employed based on Taylor series and central finite difference approximations. The schemes are first tested on the trajectories of molecular systems of varying sizes, obtained at MM and QM level using velocity-Verlet integration with standard simulation time steps. Remarkably good accuracy was obtained with some of the approximations, while the failure of others can be explained in terms of the distinct features of a molecular dynamics trajectory. We have found that, for a Taylor expansion of the potential energy, both a first and a second order truncation exhibit errors that grow with system size. In contrast, the second order central finite difference approximation displays an accuracy that is independent of the size of the system, while giving a very good estimate of the energy, and costing as little as a first order truncation of the Taylor series. A fourth order central finite difference approximation requires more input data, which is not always available in adaptive multi-scale simulations. Furthermore, this approximation gives errors of similar magnitude or larger than its second order counterpart, at standard simulation time steps. This leads to the conclusion that a second order central finite difference approximation is the optimal choice for energy extrapolation from molecular dynamics trajectories. This finding is confirmed in a final application to the analysis of an adaptive multi-scale simulation.

摘要

本文评估了使用从分子动力学轨迹中提取的能量和力集来外推势能值的简单方案。一般来说,这种方案以最小的计算成本提供了关于分子系统的最大信息量。更具体地说,这种方案在自适应多尺度分子动力学模拟领域非常重要。在该领域,通常不需要在模拟本身中计算某些轨迹点的势能值,而仅需要对模拟数据进行后分析。从可用数据中推断这些点的值可以节省大量的计算时间。本文使用基于泰勒级数和中心有限差分逼近的一组外推方案。这些方案首先在使用标准模拟时间步长的速度-Verlet 积分获得的不同大小的分子系统轨迹上进行测试。一些逼近方法的精度非常高,而其他方法的失败可以根据分子动力学轨迹的独特特征来解释。我们发现,对于势能的泰勒展开,一阶和二阶截断都存在误差,且误差随系统尺寸的增大而增大。相比之下,二阶中心有限差分逼近具有与系统尺寸无关的精度,同时可以很好地估计能量,并且成本仅为泰勒级数的一阶截断。四阶中心有限差分逼近需要更多的输入数据,而在自适应多尺度模拟中并不总是可用。此外,在标准模拟时间步长下,该逼近的误差与二阶逼近的误差相似或更大,这导致二阶中心有限差分逼近是从分子动力学轨迹外推能量的最佳选择。这一发现在自适应多尺度模拟分析的最终应用中得到了验证。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验