Theoretical Sciences Unit, Jawaharlal Nehru Center for Advanced Scientific Research, Jakkur P.O., Bangalore 560064, India.
J Chem Phys. 2012 Aug 21;137(7):074902. doi: 10.1063/1.4743957.
In an electrolyte solution the charge-charge structure factor obeys S(ZZ)(k;T,ρ)=0+ξ(Z,1)(2)k(2)-ξ(Z,2)(4)k(4)+···, where ξ(Z, 1) and ξ(Z, 2) are the second- and fourth-moment charge-charge correlation lengths depending on the temperature T and the overall ion density ρ. The vanishing of the leading term, the first Stillinger-Lovett (SL) sum rule, simply reflects bulk electroneutrality. The second SL rule, or second-moment condition, dictates that ξ(Z, 1) = ξ(D), where the Debye screening length ξ(D) is proportional to √(T/ρ). In this paper we present results from grand canonical Monte Carlo simulations of a fully size and charge symmetric 1:1 (finely-discretized) hard-sphere electrolyte, or restricted primitive model. By design, electroneutrality is imposed during the simulations, so satisfying the first sum rule automatically. However, careful finite-size scaling analyses of extensive histogram reweighted data indicate that the second-moment condition is violated at criticality, ξ(Z,1)(c) exceeding ξ(D)(c) by approximately 8%. It is also found that ξ(Z,2)(4) diverges to +∞ as T → T(c) in a manner closely mirroring the density-density fluctuations, S(NN)(0). These findings contradict generalized Debye-Hückel theory and also the exactly soluble charge-symmetric spherical models, both of which support the second-moment condition at criticality and the finiteness of the fourth-moment. Nevertheless, the observed behavior is strikingly similar to that of the charge-asymmetric spherical models.
在电解质溶液中,电荷-电荷结构因子满足 S(ZZ)(k;T,ρ)=0+ξ(Z,1)(2)k(2)-ξ(Z,2)(4)k(4)+···,其中 ξ(Z, 1) 和 ξ(Z, 2) 是取决于温度 T 和总离子密度 ρ 的第二和第四阶电荷-电荷相关长度。主导项的消失,即第一个斯蒂林格-洛维特(SL)求和规则,简单地反映了体电中性。第二个 SL 规则,或二阶矩条件,规定 ξ(Z, 1) = ξ(D),其中德拜屏蔽长度 ξ(D)与 √(T/ρ) 成正比。在本文中,我们展示了完全尺寸和电荷对称的 1:1(精细离散)硬球电解质或受限原始模型的巨正则蒙特卡罗模拟的结果。通过设计,在模拟过程中施加电中性,因此自动满足第一个求和规则。然而,对广泛的直方图重新加权数据进行的仔细有限尺寸标度分析表明,二阶矩条件在临界点被违反,ξ(Z,1)(c)超过 ξ(D)(c)约 8%。还发现,当 T→T(c) 时,ξ(Z,2)(4)以与密度-密度涨落 S(NN)(0)非常相似的方式发散到正无穷大。这些发现与广义德拜-休克尔理论以及完全可解的电荷对称球形模型相矛盾,两者都在临界点支持二阶矩条件和第四阶矩的有限性。然而,观察到的行为与电荷不对称的球形模型非常相似。