Suppr超能文献

用于国家医疗保健质量指标(NDNQI)国家比较统计和季度报告的输入数据质量控制:三种用于多重异常值检测的稳健尺度估计器的对比

Input data quality control for NDNQI national comparative statistics and quarterly reports: a contrast of three robust scale estimators for multiple outlier detection.

作者信息

Hou Qingjiang, Crosser Brandon, Mahnken Jonathan D, Gajewski Byron J, Dunton Nancy

机构信息

Department of Biostatistics, University of Kansas Medical Center, 3901 Rainbow Blvd, Kansas City, KS 66160, USA.

出版信息

BMC Res Notes. 2012 Aug 25;5:456. doi: 10.1186/1756-0500-5-456.

Abstract

BACKGROUND

To evaluate institutional nursing care performance in the context of national comparative statistics (benchmarks), approximately one in every three major healthcare institutions (over 1,800 hospitals) across the United States, have joined the National Database for Nursing Quality Indicators (NDNQI). With over 18,000 hospital units contributing data for nearly 200 quantitative measures at present, a reliable and efficient input data screening for all quantitative measures for data quality control is critical to the integrity, validity, and on-time delivery of NDNQI reports.

METHODS

With Monte Carlo simulation and quantitative NDNQI indicator examples, we compared two ad-hoc methods using robust scale estimators, Inter Quartile Range (IQR) and Median Absolute Deviation from the Median (MAD), to the classic, theoretically-based Minimum Covariance Determinant (FAST-MCD) approach, for initial univariate outlier detection.

RESULTS

While the theoretically based FAST-MCD used in one dimension can be sensitive and is better suited for identifying groups of outliers because of its high breakdown point, the ad-hoc IQR and MAD approaches are fast, easy to implement, and could be more robust and efficient, depending on the distributional property of the underlying measure of interest.

CONCLUSION

With highly skewed distributions for most NDNQI indicators within a short data screen window, the FAST-MCD approach, when used in one dimensional raw data setting, could overestimate the false alarm rates for potential outliers than the IQR and MAD with the same pre-set of critical value, thus, overburden data quality control at both the data entry and administrative ends in our setting.

摘要

背景

为了在国家比较统计(基准)的背景下评估机构护理绩效,美国约每三家主要医疗机构(超过1800家医院)中就有一家加入了国家护理质量指标数据库(NDNQI)。目前有超过18000个医院科室为近200项定量指标贡献数据,对所有定量指标进行可靠且高效的输入数据筛选以进行数据质量控制,对于NDNQI报告的完整性、有效性和按时交付至关重要。

方法

通过蒙特卡洛模拟和NDNQI定量指标示例,我们将两种使用稳健尺度估计量的临时方法,即四分位距(IQR)和中位数绝对离差(MAD),与基于理论的经典最小协方差行列式(FAST-MCD)方法进行比较,用于初始单变量离群值检测。

结果

虽然在一维中使用的基于理论的FAST-MCD可能很敏感,并且由于其高崩溃点更适合识别离群值组,但临时的IQR和MAD方法快速、易于实施,并且根据感兴趣的基础测量的分布特性可能更稳健和高效。

结论

在短数据筛选窗口内,大多数NDNQI指标具有高度偏态分布,在一维原始数据设置中使用FAST-MCD方法时,与具有相同临界值预设的IQR和MAD相比,可能会高估潜在离群值的误报率,因此,在我们的设置中会给数据录入和管理端的数据质量控制带来过重负担。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f67a/3542164/70ddbcede94b/1756-0500-5-456-1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验