Garzón Javier, Rodríguez-Muñoz María, Sánchez-Blázquez Pilar
Neurofarmacología, Instituto de Neurobiología Santiago Ramón y Cajal, Madrid E-28002, Spain.
Curr Drug Abuse Rev. 2012 Sep;5(3):199-226. doi: 10.2174/1874473711205030199.
In the nervous system, the interaction of opioids like morphine and its derivatives, with the G protein-coupled Mu-opioid receptor (MOR) provokes the development of analgesic tolerance, as well as physical dependence. Tolerance implies that increasing doses of the drug are required to achieve the same effect, a phenomenon that contributes significantly to the social problems surrounding recreational opioid abuse. In recent years, our understanding of the mechanisms that control MOR function in the nervous system, and that eventually produce opioid tolerance, has increased greatly. Pharmacological studies have identified a number of signaling proteins involved in morphine-induced tolerance, including the N-methyl-D-aspartate acid glutamate receptor (NMDAR), nitric oxide synthase (NOS), protein kinase C (PKC), protein kinase A (PKA), calcium (Ca²⁺)/calmodulin (CaM)-dependent kinase II (CaMKII), delta-opioid receptor (DOR) and the regulators of G-protein signaling (RGS) proteins. There is general agreement on the critical role of the NMDAR/nNOS/CaMKII pathway in this process, which is supported by the recent demonstration of a physical association between MORs and NMDARs in post-synaptic structures. Indeed, it is feasible that treatments that diminish morphine tolerance may target distinct elements within the same regulatory MOR-NMDAR pathway. Accordingly, we propose a model that incorporates the most relevant signaling components implicated in opioid tolerance in which, certain signals originating from the activated MOR are perceived by the associated NMDAR, which in turn exerts a negative feedback effect on MOR signaling. MOR- and NMDAR-mediated signals work together in a sequential and interconnected manner to ultimately induce MOR desensitization. Future studies of these phenomena should focus on adding further components to this signaling pathway in order to better define the mechanism underlying MOR desensitization in neural cells.
在神经系统中,吗啡及其衍生物等阿片类药物与G蛋白偶联的μ阿片受体(MOR)相互作用,会引发镇痛耐受性以及身体依赖性的产生。耐受性意味着需要增加药物剂量才能达到相同效果,这一现象在围绕娱乐性阿片类药物滥用的社会问题中起到了重要作用。近年来,我们对神经系统中控制MOR功能并最终导致阿片类药物耐受性的机制的理解有了很大提高。药理学研究已经确定了一些参与吗啡诱导耐受性的信号蛋白,包括N-甲基-D-天冬氨酸谷氨酸受体(NMDAR)、一氧化氮合酶(NOS)、蛋白激酶C(PKC)、蛋白激酶A(PKA)、钙(Ca²⁺)/钙调蛋白(CaM)依赖性激酶II(CaMKII)、δ阿片受体(DOR)以及G蛋白信号调节剂(RGS)蛋白。NMDAR/nNOS/CaMKII途径在这一过程中的关键作用已得到普遍认可,突触后结构中MOR与NMDAR之间存在物理关联的最新证明也支持了这一点。事实上,减少吗啡耐受性的治疗方法可能针对同一调节性MOR-NMDAR途径中的不同元件,这是可行的。因此,我们提出了一个模型,该模型纳入了与阿片类药物耐受性相关的最相关信号成分,其中,源自活化MOR的某些信号被相关的NMDAR感知,而NMDAR又对MOR信号产生负反馈作用。MOR介导的信号和NMDAR介导的信号以连续且相互关联的方式共同作用,最终导致MOR脱敏。对这些现象的未来研究应集中于在该信号通路中添加更多成分,以便更好地确定神经细胞中MOR脱敏的潜在机制。