Department of Microbiology & Immunology, Columbia University College of Physicians and Surgeons, New York, New York, USA.
Nat Methods. 2012 Oct;9(10):993-8. doi: 10.1038/nmeth.2143. Epub 2012 Aug 26.
Malaria afflicts over 200 million people worldwide, and its most lethal etiologic agent, Plasmodium falciparum, is evolving to resist even the latest-generation therapeutics. Efficient tools for genome-directed investigations of P. falciparum-induced pathogenesis, including drug-resistance mechanisms, are clearly required. Here we report rapid and targeted genetic engineering of this parasite using zinc-finger nucleases (ZFNs) that produce a double-strand break in a user-defined locus and trigger homology-directed repair. Targeting an integrated egfp locus, we obtained gene-deletion parasites with unprecedented speed (2 weeks), both with and without direct selection. ZFNs engineered against the parasite gene pfcrt, responsible for escape under chloroquine treatment, rapidly produced parasites that carried either an allelic replacement or a panel of specified point mutations. This method will enable a diverse array of genome-editing approaches to interrogate this human pathogen.
疟疾影响全球超过 2 亿人,其最致命的病原体恶性疟原虫正在进化以抵抗甚至最新一代的治疗药物。显然需要有效的工具来进行针对疟原虫引起的发病机制的基因组指导研究,包括耐药机制。在这里,我们报告了使用锌指核酸酶(ZFNs)快速靶向和靶向该寄生虫的遗传工程,该酶在用户定义的基因座中产生双链断裂,并触发同源定向修复。针对整合的 egfp 基因座,我们以空前的速度(2 周)获得了基因缺失寄生虫,无论是直接选择还是不直接选择。针对寄生虫基因 pfcrt 的 ZFNs 设计,该基因负责逃避氯喹治疗,快速产生了携带等位基因替换或一组特定点突变的寄生虫。这种方法将使各种各样的基因组编辑方法能够研究这种人类病原体。