ETH Zurich , Department of Health Science and Technology, Zurich, Switzerland.
Biomacromolecules. 2012 Oct 8;13(10):3241-52. doi: 10.1021/bm301005w. Epub 2012 Sep 7.
We have investigated the thermodynamic and dynamic behavior of multistranded β-lactoglobulin protein fibrils in water, by combining static, dynamic, and depolarized dynamic light scattering (SLS, DLS, DDLS), small angle neutron scattering (SANS), rheology, and cryogenic transmission electron microscopy (cryo-TEM). We focus on the region of the phase diagram at which ionic strength and concentration changes induce transitions in gelation and lyotropic liquid crystalline behavior. An increase in ionic strength, induced by NaCl salt, progressively causes the phase transitions from nematic (N) to gel (G) phases; a further increase causes the transition to a translucent phase and to a macroscopic phase separation, respectively. An increase in fibril concentration induces first a phase transition from an isotropic (I) to a nematic phase (N); a further increase induces the formation of a gel phase. The protein gel strength is investigated by rheology measurements. SANS and osmotic compressibility calculated by SLS measurements clearly capture the main features of the IN transition of β-lactoglobulin protein fibrils. The form and structure factors measured by scattering experiments are analyzed by the polymer reference interaction site model (PRISM). Dynamics of the protein fibrils at different concentrations, measured by polarized and depolarized dynamic light scattering, show both individual and collective diffusion after the isotropic-nematic transition. Above this transition, cryo-TEM images further demonstrate the alignment of the protein fibrils, which is quantified by a 2D order parameter. This work discusses comprehensively, both experimentally and theoretically, the thermodynamics and dynamic features of β-lactoglobulin amyloid fibrils in a vast region of the concentration-ionic strength phase diagram.
我们通过静态、动态和去偏动态光散射(SLS、DLS、DDLS)、小角中子散射(SANS)、流变学和低温透射电子显微镜(cryo-TEM)相结合,研究了多股β-乳球蛋白蛋白原纤维在水中的热力学和动态行为。我们专注于相图中离子强度和浓度变化诱导凝胶化和溶致液晶行为转变的区域。NaCl 盐引起的离子强度增加逐渐导致从向列(N)到凝胶(G)相的相转变;进一步增加会导致分别过渡到半透明相和宏观相分离。纤维浓度的增加首先诱导从各向同性(I)到向列(N)相的相转变;进一步增加会诱导凝胶相的形成。通过流变学测量研究蛋白质凝胶强度。通过 SLS 测量计算的 SANS 和渗透压压缩性清楚地捕捉到β-乳球蛋白蛋白原纤维的 IN 转变的主要特征。通过散射实验测量的形态和结构因子通过聚合物参考相互作用位点模型(PRISM)进行分析。在不同浓度下通过偏振和去偏振动态光散射测量的蛋白质纤维的动力学,在各向同性-向列转变后显示出个体和集体扩散。在该转变之上,cryo-TEM 图像进一步证明了蛋白质纤维的对齐,通过二维有序参数进行量化。这项工作全面地讨论了β-乳球蛋白淀粉样纤维在浓度-离子强度相图的广阔区域中的热力学和动态特征,从实验和理论两个方面进行了讨论。