Suppr超能文献

硅光子传感器集成在数字微流控系统中。

Silicon photonic sensors incorporated in a digital microfluidic system.

机构信息

Photonics Research Group, Department of Information Technology, Ghent University, Sint-Pietersnieuwstraat 41, 9000 Ghent, Belgium.

出版信息

Anal Bioanal Chem. 2012 Dec;404(10):2887-94. doi: 10.1007/s00216-012-6319-6. Epub 2012 Aug 29.

Abstract

Label-free biosensing with silicon nanophotonic microring resonator sensors has proven to be an excellent sensing technique for achieving high-throughput and high sensitivity, comparing favorably with other labeled and label-free sensing techniques. However, as in any biosensing platform, silicon nanophotonic microring resonator sensors require a fluidic component which allows the continuous delivery of the sample to the sensor surface. This component is typically based on microchannels in polydimethylsiloxane or other materials, which add cost and complexity to the system. The use of microdroplets in a digital microfluidic system, instead of continuous flows, is one of the recent trends in the field, where microliter- to picoliter-sized droplets are generated, transported, mixed, and split, thereby creating miniaturized reaction chambers which can be controlled individually in time and space. This avoids cross talk between samples or reagents and allows fluid plugs to be manipulated on reconfigurable paths, which cannot be achieved using the more established and more complex technology of microfluidic channels where droplets are controlled in series. It has great potential for high-throughput liquid handling, while avoiding on-chip cross-contamination. We present the integration of two miniaturized technologies: label-free silicon nanophotonic microring resonator sensors and digital microfluidics, providing an alternative to the typical microfluidic system based on microchannels. The performance of this combined system is demonstrated by performing proof-of-principle measurements of glucose, sodium chloride, and ethanol concentrations. These results show that multiplexed real-time detection and analysis, great flexibility, and portability make the combination of these technologies an ideal platform for easy and fast use in any laboratory.

摘要

无标记生物传感与硅纳米光子学微环谐振器传感器相结合,已被证明是一种出色的传感技术,可实现高通量和高灵敏度,优于其他标记和无标记传感技术。然而,与任何生物传感平台一样,硅纳米光子学微环谐振器传感器需要一个流体组件,允许样品连续输送到传感器表面。该组件通常基于聚二甲基硅氧烷或其他材料中的微通道,这会增加系统的成本和复杂性。在数字微流控系统中使用微滴,而不是连续流动,是该领域的最新趋势之一,其中生成、传输、混合和分裂微升至皮升大小的微滴,从而创建可单独在时间和空间上控制的微型反应室。这避免了样品或试剂之间的串扰,并允许在可重构路径上操纵流体塞,而这是使用更成熟和更复杂的微流道技术无法实现的,在微流道技术中,微滴是串联控制的。它在避免芯片上交叉污染的同时,具有高通量液体处理的巨大潜力。我们提出了两种微型化技术的集成:无标记硅纳米光子学微环谐振器传感器和数字微流控技术,为基于微通道的典型微流控系统提供了替代方案。通过对葡萄糖、氯化钠和乙醇浓度进行原理验证测量,展示了该组合系统的性能。这些结果表明,复用实时检测和分析、极大的灵活性和便携性使这些技术的组合成为在任何实验室中轻松快速使用的理想平台。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验