Department of Oncology Research, Amgen Inc, 1 Amgen Center Drive, Thousand Oaks, CA 91320, USA.
Breast Cancer Res Treat. 2012 Oct;135(3):771-80. doi: 10.1007/s10549-012-2222-2. Epub 2012 Aug 29.
Tumor cells in bone can induce the activation of osteoclasts, which mediate bone resorption and release of growth factors and calcium from the bone matrix, resulting in a cycle of tumor growth and bone breakdown. Targeting the bone microenvironment by the inhibition of RANKL, an essential mediator of osteoclast function, not only prevents tumor-induced osteolysis but also decreases skeletal tumor burden in preclinical models. The inhibition of skeletal tumor progression after the inhibition of osteoclasts is via interruption of the "vicious cycle" of tumor/bone interactions. The majority of breast cancer patients at risk for bone metastases harbor estrogen receptor-positive (ER+) tumors. We developed a mouse model for ER+ breast cancer bone metastasis and evaluated the effect of RANKL inhibition on tumor-induced osteolysis and skeletal tumor growth both alone and in combination with tamoxifen. Luciferase-labeled MCF-7 cells (MCF-7Luc) formed metastatic foci in the hind limbs following intracardiac injection and caused mixed osteolytic/osteoblastic lesions. RANKL inhibition by OPG-Fc treatment blocked osteoclast activity and prevented tumor-induced osteolysis, as well as caused a marked decrease in skeletal tumor burden. Tamoxifen as a single agent reduced MCF-7Luc tumor growth in the hind limbs. In a combination experiment, OPG-Fc plus tamoxifen resulted in significantly greater tumor growth inhibition than either single agent alone. Histologic analysis revealed a decrease in the proliferation of tumor cells by both single agents, which was enhanced in the combination treatment. Upon treatment with OPG-Fc alone or in combination with tamoxifen, there was a complete absence of osteolytic lesions, demonstrating the ability of RANKL inhibition to prevent skeletal related morbidity in an ER+ model. The combination approach of targeting osteoclasts and the bone microenvironment by RANKL inhibition and the tumor directly via hormonal therapy may provide additional benefit to reducing skeletal tumor progression in ER+ breast cancer patients.
肿瘤细胞在骨骼中可诱导破骨细胞的激活,破骨细胞介导骨吸收并从骨基质中释放生长因子和钙,导致肿瘤生长和骨破坏的循环。通过抑制 RANKL(破骨细胞功能的重要介质)来靶向骨骼微环境,不仅可以防止肿瘤引起的骨质溶解,还可以减少临床前模型中的骨骼肿瘤负担。在抑制破骨细胞后,通过中断肿瘤/骨骼相互作用的“恶性循环”来抑制骨骼肿瘤的进展。大多数有骨转移风险的乳腺癌患者都存在雌激素受体阳性(ER+)肿瘤。我们开发了一种 ER+乳腺癌骨转移的小鼠模型,并评估了 RANKL 抑制单独和与他莫昔芬联合使用对肿瘤诱导的骨质溶解和骨骼肿瘤生长的影响。荧光素酶标记的 MCF-7 细胞(MCF-7Luc)通过心内注射在下肢形成转移灶,并导致混合溶骨性/成骨性病变。OPG-Fc 治疗抑制 RANKL 可阻断破骨细胞活性并防止肿瘤诱导的骨质溶解,还可显著降低骨骼肿瘤负担。他莫昔芬作为单一药物可减少下肢 MCF-7Luc 肿瘤的生长。在联合实验中,OPG-Fc 加他莫昔芬的联合治疗比单独使用任一药物的抑制作用更明显。组织学分析显示,两种单一药物均可降低肿瘤细胞的增殖,联合治疗可增强这种作用。单独使用 OPG-Fc 或联合使用他莫昔芬治疗时,完全没有溶骨性病变,表明 RANKL 抑制通过靶向骨骼相关发病率的方法来预防 ER+模型中的骨骼微环境和破骨细胞,以及通过激素治疗直接靶向肿瘤,这可能为减少 ER+乳腺癌患者骨骼肿瘤进展提供额外的益处。