Suppr超能文献

枯草芽孢杆菌对类细菌素的蛋白质组反应反映了与细胞质膜相互作用的差异。

Proteomic response of Bacillus subtilis to lantibiotics reflects differences in interaction with the cytoplasmic membrane.

机构信息

Biology of Microorganisms, Ruhr University Bochum, Bochum, Germany.

出版信息

Antimicrob Agents Chemother. 2012 Nov;56(11):5749-57. doi: 10.1128/AAC.01380-12. Epub 2012 Aug 27.

Abstract

Mersacidin, gallidermin, and nisin are lantibiotics, antimicrobial peptides containing lanthionine. They show potent antibacterial activity. All three interfere with cell wall biosynthesis by binding lipid II, but they display different levels of interaction with the cytoplasmic membrane. On one end of the spectrum, mersacidin interferes with cell wall biosynthesis by binding lipid II without integrating into bacterial membranes. On the other end of the spectrum, nisin readily integrates into membranes, where it forms large pores. It destroys the membrane potential and causes leakage of nutrients and ions. Gallidermin, in an intermediate position, also readily integrates into membranes. However, pore formation occurs only in some bacteria and depends on membrane composition. In this study, we investigated the impact of nisin, gallidermin, and mersacidin on cell wall integrity, membrane pore formation, and membrane depolarization in Bacillus subtilis. The impact of the lantibiotics on the cell envelope was correlated to the proteomic response they elicit in B. subtilis. By drawing on a proteomic response library, including other envelope-targeting antibiotics such as bacitracin, vancomycin, gramicidin S, or valinomycin, YtrE could be identified as the most reliable marker protein for interfering with membrane-bound steps of cell wall biosynthesis. NadE and PspA were identified as markers for antibiotics interacting with the cytoplasmic membrane.

摘要

黏菌素、加替沙星和乳链菌肽是含有硫醚键的抗菌肽,它们具有很强的抗菌活性。这三种抗生素都通过与脂质 II 结合来干扰细胞壁生物合成,但它们与细胞质膜的相互作用程度不同。在一个极端,黏菌素通过与脂质 II 结合而不整合到细菌膜中来干扰细胞壁生物合成。在另一个极端,乳链菌肽很容易整合到膜中,在那里它形成大孔。它破坏膜电位并导致营养物质和离子泄漏。加替沙星处于中间位置,也很容易整合到膜中。然而,只有在某些细菌中才会发生孔形成,并且取决于膜的组成。在这项研究中,我们研究了乳链菌肽、加替沙星和黏菌素对枯草芽孢杆菌细胞壁完整性、膜孔形成和膜去极化的影响。这些抗生素对细胞包膜的影响与它们在枯草芽孢杆菌中引起的蛋白质组反应相关。通过利用蛋白质组反应文库,包括其他针对包膜的抗生素,如杆菌肽、万古霉素、短杆菌肽 S 或缬氨霉素,我们可以鉴定出 YtrE 是干扰细胞壁生物合成中与膜结合步骤的最可靠的标记蛋白。NadE 和 PspA 被鉴定为与细胞质膜相互作用的抗生素的标记蛋白。

相似文献

1
Proteomic response of Bacillus subtilis to lantibiotics reflects differences in interaction with the cytoplasmic membrane.
Antimicrob Agents Chemother. 2012 Nov;56(11):5749-57. doi: 10.1128/AAC.01380-12. Epub 2012 Aug 27.
2
Contributions of the σ(W) , σ(M) and σ(X) regulons to the lantibiotic resistome of Bacillus subtilis.
Mol Microbiol. 2013 Nov;90(3):502-18. doi: 10.1111/mmi.12380. Epub 2013 Sep 16.
3
Interaction of type A lantibiotics with undecaprenol-bound cell envelope precursors.
Microb Drug Resist. 2012 Jun;18(3):261-70. doi: 10.1089/mdr.2011.0242. Epub 2012 Mar 20.
4
An alternative bactericidal mechanism of action for lantibiotic peptides that target lipid II.
Science. 2006 Sep 15;313(5793):1636-7. doi: 10.1126/science.1129818.
5
Insights into in vivo activities of lantibiotics from gallidermin and epidermin mode-of-action studies.
Antimicrob Agents Chemother. 2006 Apr;50(4):1449-57. doi: 10.1128/AAC.50.4.1449-1457.2006.
6
Cell envelope stress response in cell wall-deficient L-forms of Bacillus subtilis.
Antimicrob Agents Chemother. 2012 Nov;56(11):5907-15. doi: 10.1128/AAC.00770-12. Epub 2012 Sep 10.
7
In vivo cluster formation of nisin and lipid II is correlated with membrane depolarization.
Antimicrob Agents Chemother. 2015;59(6):3683-6. doi: 10.1128/AAC.04781-14. Epub 2015 Apr 13.
8
Mechanism of inhibition of Bacillus anthracis spore outgrowth by the lantibiotic nisin.
ACS Chem Biol. 2011 Jul 15;6(7):744-52. doi: 10.1021/cb1004178. Epub 2011 May 5.
9
Microtiter plate bioassay to monitor the interference of antibiotics with the lipid II cycle essential for peptidoglycan biosynthesis.
J Microbiol Methods. 2008 Sep;75(1):70-4. doi: 10.1016/j.mimet.2008.05.002. Epub 2008 May 13.
10
Antimicrobial mechanism of lantibiotics.
Biochem Soc Trans. 2012 Dec 1;40(6):1528-33. doi: 10.1042/BST20120190.

引用本文的文献

1
Trans-kingdom conservation of mechanism between bacterial actifensin and eukaryotic defensins.
NPJ Antimicrob Resist. 2025 Jul 22;3(1):66. doi: 10.1038/s44259-025-00135-x.
2
A biomimetic nano-NET strategy for the treatment of MRSA-related implant-associated infection.
RSC Adv. 2025 May 7;15(19):14821-14837. doi: 10.1039/d5ra00367a. eCollection 2025 May 6.
4
Comparative Proteomics of Bacteria Under Stress Conditions.
Methods Mol Biol. 2025;2859:129-162. doi: 10.1007/978-1-0716-4152-1_8.
6
The microbiome-derived antibacterial lugdunin acts as a cation ionophore in synergy with host peptides.
mBio. 2024 Sep 11;15(9):e0057824. doi: 10.1128/mbio.00578-24. Epub 2024 Aug 12.
7
The phage shock protein (PSP) envelope stress response: discovery of novel partners and evolutionary history.
mSystems. 2024 Jun 18;9(6):e0084723. doi: 10.1128/msystems.00847-23. Epub 2024 May 29.
8
Lipid phase separation impairs membrane thickness sensing by the sensor kinase DesK.
Microbiol Spectr. 2024 Jun 4;12(6):e0392523. doi: 10.1128/spectrum.03925-23. Epub 2024 May 8.

本文引用的文献

1
Proteomic signatures in antibiotic research.
Proteomics. 2011 Aug;11(15):3256-68. doi: 10.1002/pmic.201100046. Epub 2011 Jul 4.
2
Proteomic signature of fatty acid biosynthesis inhibition available for in vivo mechanism-of-action studies.
Antimicrob Agents Chemother. 2011 Jun;55(6):2590-6. doi: 10.1128/AAC.00078-11. Epub 2011 Mar 7.
3
Bacterial cell wall assembly: still an attractive antibacterial target.
Trends Biotechnol. 2011 Apr;29(4):167-73. doi: 10.1016/j.tibtech.2010.12.006. Epub 2011 Jan 12.
4
Postgenomic strategies in antibacterial drug discovery.
Future Microbiol. 2010 Oct;5(10):1553-79. doi: 10.2217/fmb.10.119.
5
In-depth profiling of the LiaR response of Bacillus subtilis.
J Bacteriol. 2010 Sep;192(18):4680-93. doi: 10.1128/JB.00543-10. Epub 2010 Jul 16.
6
Membrane potential is important for bacterial cell division.
Proc Natl Acad Sci U S A. 2010 Jul 6;107(27):12281-6. doi: 10.1073/pnas.1005485107. Epub 2010 Jun 21.
7
Plectasin, a fungal defensin, targets the bacterial cell wall precursor Lipid II.
Science. 2010 May 28;328(5982):1168-72. doi: 10.1126/science.1185723.
8
An oldie but a goodie - cell wall biosynthesis as antibiotic target pathway.
Int J Med Microbiol. 2010 Feb;300(2-3):161-9. doi: 10.1016/j.ijmm.2009.10.005. Epub 2009 Dec 14.
10
In vivo localizations of membrane stress controllers PspA and PspG in Escherichia coli.
Mol Microbiol. 2009 Aug;73(3):382-96. doi: 10.1111/j.1365-2958.2009.06776.x. Epub 2009 Jun 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验