Suppr超能文献

链霉素饥饿的结核分枝杆菌 18b,潜伏性结核药物发现的工具。

Streptomycin-starved Mycobacterium tuberculosis 18b, a drug discovery tool for latent tuberculosis.

机构信息

Global Health Institute, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.

出版信息

Antimicrob Agents Chemother. 2012 Nov;56(11):5782-9. doi: 10.1128/AAC.01125-12. Epub 2012 Aug 27.

Abstract

Mycobacterium tuberculosis 18b, a streptomycin (STR)-dependent mutant that enters a viable but nonreplicating state in the absence of STR, has been developed as a simple model for drug testing against dormant bacilli. Here, we further evaluated the STR-starved 18b (SS18b) model both in vitro and in vivo by comparing the behavior of 22 approved and experimental tuberculosis drugs. Using the resazurin reduction microplate assay (REMA), rifampin (RIF), rifapentine (RPT), TMC207, clofazimine (CFM), and linezolid (LIN) were found to be active against SS18b in vitro, and their bactericidal activity was confirmed by determining the number of CFU. A latent 18b infection was established in mice, and some of the above-mentioned drugs were used for treatment, either alone or in combination with RIF. RIF, RPT, TMC207, CFM, and pyrazinamide (PZA) were all active in vivo, while cell wall inhibitors were not. A comparative kinetic study of rifamycin efficacy was then undertaken, and the results indicated that RPT clears latent 18b infection in mice faster than RIF. Intrigued by the opposing responses of live and dormant 18b cells to cell wall inhibitors, we conducted a systematic analysis of 14 such inhibitors using REMA. This uncovered an SS18b signature (CWPRED) that accurately predicted the activities of cell wall inhibitors and performed well in a blind study. CWPRED will be useful for establishing the mode of action of compounds with unknown targets, while the SS18b system should facilitate the discovery of drugs for treating latent tuberculosis.

摘要

结核分枝杆菌 18b 是一种链霉素(STR)依赖性突变株,在缺乏 STR 的情况下进入存活但非复制状态,已被开发为一种针对休眠杆菌的药物测试简单模型。在这里,我们通过比较 22 种已批准和实验性结核病药物,进一步在体外和体内评估了 STR 饥饿的 18b(SS18b)模型。使用 Resazurin 还原微板测定法(REMA),发现利福平(RIF)、利福喷汀(RPT)、TMC207、氯法齐明(CFM)和利奈唑胺(LIN)对 SS18b 在体外具有活性,并且通过确定 CFU 数证实了它们的杀菌活性。在小鼠中建立潜伏的 18b 感染,并单独或与 RIF 联合使用上述部分药物进行治疗。RIF、RPT、TMC207、CFM 和吡嗪酰胺(PZA)在体内均具有活性,而细胞壁抑制剂则没有。然后进行了 rifamycin 疗效的比较动力学研究,结果表明 RPT 比 RIF 更快地清除小鼠中的潜伏 18b 感染。由于对活细胞和休眠 18b 细胞对细胞壁抑制剂的反应相反感到好奇,我们使用 REMA 对 14 种此类抑制剂进行了系统分析。这揭示了 SS18b 特征(CWPRED),它可以准确预测细胞壁抑制剂的活性,并且在盲研究中表现良好。CWPRED 将有助于建立具有未知靶标的化合物的作用模式,而 SS18b 系统应该有助于发现治疗潜伏性结核病的药物。

相似文献

1
Streptomycin-starved Mycobacterium tuberculosis 18b, a drug discovery tool for latent tuberculosis.
Antimicrob Agents Chemother. 2012 Nov;56(11):5782-9. doi: 10.1128/AAC.01125-12. Epub 2012 Aug 27.
2
In vitro and in vivo activities of three oxazolidinones against nonreplicating Mycobacterium tuberculosis.
Antimicrob Agents Chemother. 2014 Jun;58(6):3217-23. doi: 10.1128/AAC.02410-14. Epub 2014 Mar 24.
4
Bioluminescence for assessing drug potency against nonreplicating Mycobacterium tuberculosis.
Antimicrob Agents Chemother. 2015 Jul;59(7):4012-9. doi: 10.1128/AAC.00528-15. Epub 2015 Apr 20.
5
Simple model for testing drugs against nonreplicating Mycobacterium tuberculosis.
Antimicrob Agents Chemother. 2010 Oct;54(10):4150-8. doi: 10.1128/AAC.00821-10. Epub 2010 Aug 2.
6
Short-course chemotherapy with TMC207 and rifapentine in a murine model of latent tuberculosis infection.
Am J Respir Crit Care Med. 2011 Sep 15;184(6):732-7. doi: 10.1164/rccm.201103-0397OC. Epub 2011 Jun 9.
7
Fighting tuberculosis by drugs targeting nonreplicating bacilli.
Int J Mycobacteriol. 2017 Jul-Sep;6(3):213-221. doi: 10.4103/ijmy.ijmy_85_17.
8
Mycobacterium tuberculosis Is Selectively Killed by Rifampin and Rifapentine in Hypoxia at Neutral pH.
Antimicrob Agents Chemother. 2017 Feb 23;61(3). doi: 10.1128/AAC.02296-16. Print 2017 Mar.

引用本文的文献

1
Arenicolide Family Macrolides Provide a New Therapeutic Lead Combating Multidrug-Resistant Tuberculosis.
Angew Chem Int Ed Engl. 2025 Jan 2;64(1):e202412994. doi: 10.1002/anie.202412994. Epub 2024 Nov 13.
3
Advanced drug delivery and therapeutic strategies for tuberculosis treatment.
J Nanobiotechnology. 2023 Nov 9;21(1):414. doi: 10.1186/s12951-023-02156-y.
4
Target Identification in Anti-Tuberculosis Drug Discovery.
Int J Mol Sci. 2023 Jun 22;24(13):10482. doi: 10.3390/ijms241310482.
5
Clofazimine for the treatment of tuberculosis.
Front Pharmacol. 2023 Feb 2;14:1100488. doi: 10.3389/fphar.2023.1100488. eCollection 2023.
6
Dormancy: How to Fight a Hidden Danger.
Microorganisms. 2022 Nov 25;10(12):2334. doi: 10.3390/microorganisms10122334.
7
Tricyclic SpiroLactams Kill Mycobacteria In Vitro and In Vivo by Inhibiting Type II NADH Dehydrogenases.
J Med Chem. 2022 Dec 22;65(24):16651-16664. doi: 10.1021/acs.jmedchem.2c01493. Epub 2022 Dec 6.
8
Anti-tuberculosis treatment strategies and drug development: challenges and priorities.
Nat Rev Microbiol. 2022 Nov;20(11):685-701. doi: 10.1038/s41579-022-00731-y. Epub 2022 Apr 27.
9
Targeting Non-Replicating and Latent Infection: Alternatives and Perspectives (Mini-Review).
Int J Mol Sci. 2021 Dec 10;22(24):13317. doi: 10.3390/ijms222413317.
10
Effects of Increasing Concentrations of Rifampicin on Different Mycobacterium tuberculosis Lineages in a Whole-Blood Bactericidal Activity Assay.
Antimicrob Agents Chemother. 2022 Feb 15;66(2):e0169921. doi: 10.1128/AAC.01699-21. Epub 2021 Dec 6.

本文引用的文献

1
Towards a new tuberculosis drug: pyridomycin - nature's isoniazid.
EMBO Mol Med. 2012 Oct;4(10):1032-42. doi: 10.1002/emmm.201201689. Epub 2012 Sep 17.
2
Sterilizing activities of novel combinations lacking first- and second-line drugs in a murine model of tuberculosis.
Antimicrob Agents Chemother. 2012 Jun;56(6):3114-20. doi: 10.1128/AAC.00384-12. Epub 2012 Apr 2.
3
Tuberculosis: the drug development pipeline at a glance.
Eur J Med Chem. 2012 May;51:1-16. doi: 10.1016/j.ejmech.2012.02.033. Epub 2012 Feb 25.
5
Three months of rifapentine and isoniazid for latent tuberculosis infection.
N Engl J Med. 2011 Dec 8;365(23):2155-66. doi: 10.1056/NEJMoa1104875.
6
Clofazimine: current status and future prospects.
J Antimicrob Chemother. 2012 Feb;67(2):290-8. doi: 10.1093/jac/dkr444. Epub 2011 Oct 20.
7
Pyrazinamide inhibits trans-translation in Mycobacterium tuberculosis.
Science. 2011 Sep 16;333(6049):1630-2. doi: 10.1126/science.1208813. Epub 2011 Aug 11.
8
New tuberculosis drugs on the horizon.
Curr Opin Microbiol. 2011 Oct;14(5):570-6. doi: 10.1016/j.mib.2011.07.022. Epub 2011 Aug 5.
9
Treatment of tuberculosis with rifamycin-containing regimens in immune-deficient mice.
Am J Respir Crit Care Med. 2011 May 1;183(9):1254-61. doi: 10.1164/rccm.201012-1949OC. Epub 2011 Feb 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验